WATER: Dataset of sun photometer observations in the Zhangye city foci experimental areas from Mar. 30 to Apr. 2, 2008

The dataset of sun photometer observations was obtained in the Zhangye city foci experimental areas (38°56′8.9″N, 100°27′8.3″E, 1400m) from Mar. 30 to Apr. 2, 2008. Measurements were carried out by CE318 for 1640nm, 1020nm, 936nm, 870nm, 670nm, 550nm, 440nm, 380nm and 340nm, and column water vapor by 936 nm data on Mar. 30 and 31, Apr. 1 and 2, 2008. Accuracy of CE318 could be influenced by local air pressure, instrument calibration parameters, and convertion factors. (1) Most air pressure was derived from elevation-related empiricism, which was not reliable. For more accurate result, simultaneous data from the weather station are needed. (2) Errors from instrument calibration parameters need correcting. Thus field calibration based on Langly or interior instrument calibrationcin the standard light is required. (3) Convertion factors for retrieval of aerosol optical depth and the water vapor of the water vapor channel were also from empiricism, and need further checking. Raw data were archived in k7 format and can be opened by ASTPWin. ReadMe.txt is attached for detail. Preprocessed data (after retrieval of the raw data) in Excel format are on optical depth, rayleigh scattering, aerosol optical depth, the horizontal visibility, the near surface air temperature, the solar azimuth, zenith, solar distance correlation factors, and air column mass number. Langley was used for the instrument calibration. Two parts are included in CE318 result data (see “Geometric Positions and the Total Optical Depth of Each Channel” and “Rayleigh Scattering and Aerosol Optical Depth of Each Channel”).

WATER: Dataset of ground truth measurements synchronizing with the airborne microwave radiometers (L&K bands) and thermal imager mission in the A'rou foci experimental area on Apr. 1, 2008

The dataset of ground truth measurements synchronizing with the airborne microwave radiometers (L&K bands, between 8:06~11:17BJT) and thermal imager mission (between 12:48~16:35BJT) was obtained in L2, L3, L4, L5 and L6 of the A'rou foci experimental area on Apr. 1, 2008. The samples were collected every 100m along the strip from south to north in the the morning and from north to south in the afternoon. In L2, L4 and L6, the soil temperature, soil volumetric moisture, the loss tangent, soil conductivity, and the real part and the imaginary part of soil complex permittivity were acquired by the POGO soil sensor, the mean soil temperature from 0-5cm by the probe thermometer, the surface radiative temperature measured three times by the hand-held infrared thermometer, and soil gravimetric moisture, volumetric moisture, and soil bulk density after drying by the cutting ring (100cm^3). In L3, soil volumetric moisture was acquired by ML2X, the mean soil temperature from 0-5cm by the probe thermometer, the surface radiative temperature measured three times by the hand-held infrared thermometer, and soil gravimetric moisture, volumetric moisture, and soil bulk density after drying by the cutting ring (100cm^3). In L5, soil volumetric moisture, soil conductivity, the soil temperature, and the real part of soil complex permittivity were acquired by WET, the mean soil temperature from 0-5cm by the probe thermometer, the surface radiative temperature measured three times by the hand-held infrared thermometer, soil gravimetric moisture, volumetric moisture, and soil bulk density after drying by the cutting ring (100cm^3). Besides, the handheld thermal imager observations were carried out in L4. Those provide reliable ground data for retrieval and validation of soil moisture and freeze/thaw status from active remote sensing approaches. Seven files were included, two ground-based microwave radiometers (L&K-band and L-band) observations, L2 data, L3 data, L4 data, L5 data and L6 data.

WATER: Dataset of albedo observations in the arid region hydrology experiment area

The dataset of albedo observations was obtained by the shortwave radiometer (1#: CMP3-060580 and 2#: CMP3-060584 from Institute of Remote Sensing Applications) in the arid region hydrology experiment area from May 20 to Jul. 14, 2008. The dataset of ground truth measurement was synchronizing with WiDAS (Wide-angle Infrared Dual-mode line/area Array Scanner), OMIS-II, Landsat TM, ASTER, Hyperion and CHRIS. Observation items included: (1) Albedo in Yingke oasis and Huazhaizi desert steppe foci experimental area. Yingke maize field was measured on May 28 and 30, Jun. 3, 16, 20, 27 and 29, Jul. 11 and 14, 2008, Yingke wheat field on May 20 and 29, Jun. 1, 4, 6, 9, 15 and 24, Jul. 7 and 14, 2008, Huazhaizi desert No. 2 plot on Jun. 14, 22 and 30, 2008 and the flax field on Jun. 23, 2008. (2) Albedo in Linze foci experimental area. Maize was measured on May 25, 2008 and desert and alfalfa on May 24, 2008. (3) Albedo in Biandukou foci experimental area. The rape field, the grassland and the barley were measured on Jun. 24, 2008, and barley on Jul. 6, 2008. (4) Zhangye intensive experimental area. The intra-city grassland and the roof of Jingdu Hotel were measured on May 27, 2008. Besides the shortwave radiometer, the digital multimeter (UNIT) was also used for voltage measuring. Raw data were archived in paper forms and Excel after input into the computer. Besides, shorter plants were chosen for measurements as the platform was not high enough. And the distance between the probe and the plant was shorter during the later observation period.

WATER: Dataset of ground truth measurements synchronizing with the airborne WiDAS mission in the Linze station foci experimental area on Jun. 29, 2008

The dataset of ground truth measurements synchronizing with the airborne WiDAS mission was obtained in the Linze station foci experimental area on Jun. 29, 2008. WiDAS, composed of four CCD cameras, one mid-infrared thermal imager (AGEMA 550), and one infrared thermal imager (S60), can acquire CCD, MIR and TIR band data. The simultaneous ground data included: (1) soil moisture (0-5cm) nine times by the cutting ring (50cm^3) along LY06 and LY07 strips, and once by the cutting ring method and once by ML2X Soil Moisture Tachometer in the six points of Wulidun farmland quadrates. The preprocessed soil volumetric moisture data were archived as Excel files. (2) surface radiative temperature measured three times by three handheld infrared thermometer (5# and 6# from Cold and Arid Regions Environmental and Engineering Research Institute, and one from Institute of Geographic Sciences and Natural Resources, which were all calibrated) in LY06 and LY07 strips (98 sample points and repeated three times) and the Wulidun farmland quadrates (various points and repeated three times). Data were archived as Excel files. (3) maize canopy component temperature measured by the 5# handheld infrared thermometer (from Cold and Arid Regions Environmental and Engineering Research Institute) in Wulidun farmland quadrates. Six directions were measured, canopy backlighting and frontlighting, half height backlighting and frontlighting, the light and the shaded bareland, with each direction 20 measurements. (4) spectrum of maize, soil and soil with known moisture measured by ASD Spectroradiometer (350~2 500 nm) from BNU, and the reference board (40% before Jun. 15 and 20% hereafter) in Wulidun farmland quadrates. Raw spectral data were binary files , which were recorded daily in detail, and pre-processed data on reflectance (by ViewSpecPro) were archived as Excel.files (5) mltiangle maize spectrum measured by ASD Spectroradiometer (350~2 500 nm) from BNU, the reference board (40% before Jun. 15 and 20% hereafter), two observation platforms of BNU make and one of Institute of Remote Sensing Applications make in Wulidun farmland. Raw spectral data were archived as binary files, which were recorded daily in detail, and pre-processed data on reflectance and transmittivity were archived as text files (.txt). (6) LAI of maize measured by the fisheye camera (CANON EOS40D with a lens of EF15/28), shooting straight downwards, with exceptions of higher plants, which were shot upwards. Data included original photos (.JPG) and those processed by can_eye5.0 (in excel). (7) LAI of maize measured by LAI2000 in Wulidun farmland quadrates. Data educed from LAI2000 periodically were archived as text files (.txt) and marked with one ID. Raw data (table of word and txt) and processed data (Excel) were included. Besides, observation time, the observation method and the repetition were all archived. See the metadata record “WATER: Dataset of setting of the sampling plots and stripes in the Linze station foci experimental area” for more information of the quadrate locations.

WATER: Dataset of ground truth measurement synchronizing with the airborne WiDAS mission in the Yingke oasis and Huazhaizi desert steppe foci experimental areas on Jun. 29, 2008

The dataset of ground truth measurement synchronizing with the airborne WiDAS mission was obtained in the Yingke oasis and Huazhaizi desert steppe foci experimental areas on Jun. 29, 2008. WiDAS, composed of four CCD cameras, one mid-infrared thermal imager (AGEMA 550), and one infrared thermal imager (S60), can acquire VNIR, MIR and TIR band data. The simultaneous ground data included: (1) Atmospheric parameters in Huazhaizi desert No. 2 plot from CE318 (produced by CIMEL in France). The total optical depth, aerosol optical depth, Rayleigh scattering coefficient, column water vapor in 936 nm, particle size spectrum and phase function were then retrieved from these observations. The optical depth in 1020nm, 936nm, 870nm, 670nm and 440nm were all acquired by CE318. Those data include the raw data in .k7 format and can be opened by ASTPWin. ReadMe.txt is attached for detail. Processed data in Excel format are on optical depth, rayleigh scattering, aerosol optical depth, the horizontal visibility, the near surface air temperature, the solar azimuth, zenith, solar distance correlation factors, and air column mass number. (2) Emissivity of maize and wheat in the Yingke oasis by portable 102F (2.0~25.0um) from BNU. Warm blackbody, cold blackbody, the target and the au-plating board of known emissivity. Raw data of those four measurements were archived in *.WBX, *.CBX, *.SAX and *.CBX Besides, the spectral radiance and emissivity calculated by 102F were archived in *.RAX and *.EMX, respectively. Meanwhile, the final spectral emissivity of targets were also calculated by TES (ISSTES). (3) LAI of mazie and wheat in Yingke oasis maize field. The maximum leaf length and width of leaves were measured. Data were archived as Excel files of Jul. 2. (4) FPAR (Fraction of Photosynthetically Active Radiation) of maize and wheat by SUNSACN and the digital camera in Yingke oasis maize field. FPAR= (canopyPAR-surface transmissionPAR-canopy reflection PAR+surface reflectionPAR) /canopy PAR; APAR=FPAR* canopy PAR. Data were archived in MS Office Word format. (5) the radiative temperature by the automatic thermometer (FOV: 10°; emissivity: 0.95), measured at nadir with time intervals of one second in Yingke oasis maize field (one from BNU and the other from Institute of Remote Sensing Applications), Huazhaizi desert maize field (only one from BNU for continuous radiative temperature of the maize canopy) and Huazhaizi desert No. 2 plot (two for reaumuria soongorica canopy and the background bare soil). Raw data, blackbody calibrated data and processed data were all archived as Excel files. (6) the component temperature in Yingke oasis maize field (by the handheld radiometer and the thermal image from BNU), Yingke oasis wheat field and Huazhaizi desert maize field. For maize, the component temperature included the vertical canopy temperature, the bare land temperature and the plastic film temperature; for the wheat, it included the vertical canopy temperature, the half height temperature, the lower part temperature and the bare land temperature. The data included raw data (in MS Office Word format), recorded data and the blackbody calibrated data (in Excel format). (7) Maize albedo by the shortwave radiometer in Yingke oasis maize field. R =10H (R for FOV radius; H for the observation height). Data were archived in MS Office Excel format. (8) the radiative temperature by the handheld radiometer in Yingke oasis maize field and Huazhaizi desert maize field (the vertical canopy observation and the transect observation for both fields), and Huazhaizi desert No. 2 plot (the NE-SW diagonal observation). The data included raw data (in .doc format), recorded data and the blackbody calibrated data (in Excel format). (9) ground object reflectance spectra in Yingke oasis maize field by ASD FieldSpec (350~2 500 nm) from BNU. The vertical canopy observation and the line-transect observation were used. The data included raw data (from ASD, read by ViewSpecPro), recorded data and processed data on reflectance (in Excel format).