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Abstract: The eco-hydrological wireless sensor network (EHWSN) in the middle reaches
of the Heihe River Basin in China is designed to capture the spatial and temporal variability
and to estimate the ground truth for validating the remote sensing productions. However,
there is no available prior information about a target variable. To meet both requirements,
a hybrid model-based sampling method without any spatial autocorrelation assumptions
is developed to optimize the distribution of EHWSN nodes based on geostatistics.
This hybrid model incorporates two sub-criteria: one for the variogram modeling to
represent the variability, another for improving the spatial prediction to evaluate remote
sensing productions. The reasonability of the optimized EHWSN is validated from
representativeness, the variogram modeling and the spatial accuracy through using 15 types
of simulation fields generated with the unconditional geostatistical stochastic simulation.
The sampling design shows good representativeness; variograms estimated by samples
have less than 3% mean error relative to true variograms. Then, fields at multiple scales
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are predicted. As the scale increases, estimated fields have higher similarities to simulation
fields at block sizes exceeding 240 m. The validations prove that this hybrid sampling
method is effective for both objectives when we do not know the characteristics of an

optimized variables.

Keywords: eco-hydrological wireless sensor network; spatial sampling; hybrid optimization
criterion; unconditional stochastic simulation

1. Introduction

Sensor networks, one of important components of Global Earth Observation System of Systems [1],
promote the advancement of Earth system science and environmental science [2]. Sensor networks, as a
revolutionary technique, are widely used in several huge observation projects, such as the Critical Zone
Observatories [3], the National Ecological Observatory Network [4], the Terrestrial Environmental
Observatories [5] and the Long-Term Ecological Research Network [6], to understand hydrological and
ecological processes.

Compared with traditional observation methods, sensor networks have two significant advantages in
catchment hydrology research: the real-time monitoring of hydrological, ecological and meteorological
elements and the effective capture of the spatial and temporal variability of different parameters, as well
as the local spatial mean.

With the development of international water science, the NSFC (National Nature Science Foundation
of China) launched the Heihe Plan entitled “Integrated research on eco-hydrological process of the Heihe
River Basin (HRB)” in 2010. The Heihe Water Allied Telemetry Experimental Research (HiIWATER)
program is the observation platform of the Heihe Plan, and the eco-hydrological wireless sensor
network (EHWSN) is one of the fundamental experiments of HHWATER [7]. The EHWSN provides
indispensable observations that allow HIWATER to address problems that include heterogeneity, scaling
and uncertainty. To solve these problems, EHWSN is required to capture the spatial variability and
temporal dynamics of soil moisture and temperature and to provide accurate ground-truth estimates at
remote sensing pixel scales [8]. Therefore, an effective EHWSN must be optimally designed.

Because of the inherent stochastic character of natural processes, researchers are frequently faced
with the problem of selecting a suitable sampling location [9,10]. Geostatistics are used to capture or
represent spatial variations and have been widely applied in various fields, including geoscience, water
resources, environmental science and soil science [11]. A large number of spatial sampling techniques
have been discussed [12] and reviewed [13]. From the perspective of geostatistics, the optimal design of
spatial sampling has three objectives.

First, it aims to accurately estimate variogram parameters. Warrick and Myers [14] proposed a method
(the WM criterion) in which the distribution of paired points in the lag classes corresponds to a
pre-specified distribution. Miiller and Zimmerman [15] and Zhu and Stein [16] focused on increasing
the estimation accuracy through comparing with assumed variogram parameters.
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Second, an optimal design focuses on the precision of spatial statistical inference. Optimization
strategies mainly include minimizing the maximum or average kriging variance using known variogram
models [17,18] or evenly distributing the samples in the study region to indirectly reduce the kriging
variance. The latter strategy uses the free model without assuming variogram parameters, employing
methods, such as minimizing the mean of shortest distances (MMSD) [19], maximum entropy [20],
fractal dimension [21] and mean squared distance to sides, vertices and boundaries [22]. These methods,
which improve spatial predictions, are only applied in ideal fields that meet the second-order stationary
assumption. However, land surface variables sometimes possess stratified characteristics, especially in
larger research areas, and the second-order stationary assumption does not apply in these cases. A
sampling method to address the spatial stratification based on the MSN (means of surfaces with
non-homogeneity) theory was proposed by Wang et al. [23] and Hu and Wang [24]. It estimates a
variogram for each stratum and requires a larger number of samples.

Of the above methods for spatial sampling, one type for estimating variogram leads to sample
clustering, which provides poor field coverage for the spatial prediction. Though the other type of
method can improve spatial prediction accuracy, it is inappropriate for variogram modeling, due to the
limited availability of sampling for short lag classes. To eliminate the deficiencies in both methods, the
third type of hybrid criteria is proposed. It is divided into two categories. The first category is the
combined use of the WM and MMSD methods [25,26]. In this category, either WM or MMSD is
performed first, followed by the other, each with a specified number of samples. This is a sequential
optimization process that decreases the utilization rate of the samples. It is difficult to reasonably allocate
the number of samples for each sub-criterion. The second category is the simultaneous minimization of
kriging variance and improving estimation of variogram parameters by assuming a known variogram [27].
However, in practice, it is difficult to know the variogram of a target variable, and the rationality of the
assumption parameters cannot be evaluated.

The ENWSN is required not only to capture the spatial variability of the observed variables, but also
to infer true values at the pixel scale to validate remote sensing products. Therefore, a hybrid criterion
needs to be established. Because we do not know the characteristic of the specific target variable, the
criterion should be based on the free model. Furthermore, to use samples more efficiently, all samples
should make a contribution to each sub-criterion of the hybrid criterion. Therefore, each sub-criterion
should not be performed independently, but instead, both sub-criteria should be performed together. The
existing hybrid methods, however, are not suitable. To achieve both goals of the EHWSN, we develop a
combination criterion without any assumptions of the spatial autocorrelation structure of surface variables.
It is expressed as an integrated objective function that makes the sample distribution as uniform as possible
in both geography and feature (lag distance) space.

This paper is structured as follows. Section 2 introduces the requirements of the EHWSN and the
study area. Section 3 describes the optimization criterion and assessment methods. Section 4 shows the
tests of the developed hybrid criterion, the final results of the spatial EHWSN distribution and validates
the results with a series of evaluation indexes, and Section 5 explains the merits and remaining questions
associated with this hybrid criterion.
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2. Requirements for Optimal Sampling by EHWSN
2.1. Objective of EHWSN

The EHWSN in the middle reaches of HRB aims to integrate a variety of distributed ecological and
hydrological observations to capture the spatial-temporal variations of key eco-hydrological variables,
including soil moisture, soil temperature and land surface temperature, and to obtain the ground truth for
the validation of remote sensing products over a heterogeneous land surface. To better utilize
multi-source satellite/airborne remote sensing data sets in studies of eco-hydrological processes, the
EHWSN employs multi-scale validation for remote sensing products using kriging technology via nested
and densely-distributed WSN nodes. Optimal spatial sampling of EHWSN nodes should be performed
to help achieve the above objectives.

2.2. Experimental Area

The EHWSN is installed in a 5.5 km x 5.5 km observation matrix region located in the middle reaches
of HRB, which covers both the Yingke and Daman irrigation districts of Zhangye oasis, in northwest
China (Figure 1). The main crop type is seed corn, covering approximately 75% of the total area. Other
plants, such as wheat, vegetables and fruits, are also represented. There is a dense canal network with
five types of canals that forms the area’s irrigation system. This irrigation management is the main source
of land surface heterogeneity.

Figure 1. Map of the observation matrix region.
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To effectively establish a nested WSN, the observation matrix is divided into three sub-regions:
(A) the intensive region, with the same area as a MODIS pixel; (B) a 4 x 4 MODIS pixels region and
(C) the surrounding region.
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2.3. Arrangement of the EHWSN Nodes

A total of 180 EHWSN nodes will be installed, including 50 WATERNET nodes, 50 SoilNET nodes
and 80 BNUNET nodes. The WATERNET nodes primarily observe the soil moisture, soil temperature
and soil salinity at soil layer depths of 4 cm and 10 cm. The SoilNET nodes measure soil moisture and
soil temperate at soil layer depths of 4 cm, 10 cm, 20 cm and 40 cm. The BNUNET nodes also observe
soil moisture at 4 cm and soil temperature at 4 cm, 10 cm and 20 cm.

There are some artificial and natural condition limitations on the spatial distribution of EHWSN
nodes. In total, 17 automatic meteorological stations (AMSs) have been installed in the observation
matrix to measure the evapotranspiration over the heterogeneous land surface by observing the boundary
layer conditions or the flux exchange between the atmosphere and land surface. Additionally,
17 BNUNET nodes have been artificially fixed in Region C, so that there is one node per production
group. These pre-specified EHWSN nodes, together with the AMSs, are considered initial points during
the optimization process (Figure 2). The remaining 163 nodes are optimized in Regions A and B.
Of these, 56 nodes (50 SoilNET nodes and 6 WATERNET nodes) are designed to reveal the spatial
variation at a scale of hundreds of meters in Region A. The remaining 63 BNUNET nodes and
44 WATERNET nodes in Region B are used to capture the spatial variation at an approximately
kilometer scale. All of the EHWSN nodes are deployed on vegetation-covered land, because the
instruments cannot be installed on other land surface types, such as roads, residential buildings,
wind-defended forest or irrigation channels (Figure 2).

Figure 2. Initial eco-hydrological wireless sensor network (EHWSN) nodes in the

optimization process.
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3. Methodology
3.1. Hybrid Criterion

According to the requirements of EHWSN, we need to both effectively estimate the variogram
parameters and ensure the spatial prediction accuracy when making inferences. Both requirements can
be attributed to the optimal design of the sampling network; namely, how to simultaneously achieve the
variogram estimation and minimizing the spatial estimation variance to the satisfied accuracy with the
specified number of EHWSN nodes without assuming any variograms.

Based on the above goals, we establish an integrated hybrid model to simultaneously satisfy the two
sub-criteria. This model is described by the following equation:

114 (5) = WP+, " (S) )
where @, , ., is a weighted sum of two sub-criterions with weighted coefficients wi and w2 and §'is the

optimized point set. EP represents a method that is effective for estimating variogram parameters, and
SP is a method that is good for spatial prediction. Due to different dimensions, both ®7;" and @™

must be normalized in order to be added together.

3.1.1. Sub-Criterion to Estimate the Variogram Parameters

In geostatistics, the theoretical variogram 2y(x,%) is a function that describes the degree of spatial
dependence of a random spatial field V' [28]. The estimator 2y(%) is the arithmetic mean of the squared

differences between measurements Z at points x and x + 4. The classical estimator of the variogram is
defined as follows [29]:
N 1 & 2
29(h) = N Zl [Z(x+h)=Z(x)] )
where N(/) is the number of experimental pairs [Z(x), Z(x + h)] with distance h and Z(x) is the value at
location x.

We choose the WM criterion [14] for the £P method, which relies only on the distances between the
points and does not depend on assumptions of the spatial autocorrelation structure of a variable.
A predefined distribution of the number of coupled pairs in all lag classes should be optimized to improve
the accuracy of variogram modeling. The desired distribution can be based on expert judgment, and
Russo [30] suggests that a uniform distribution can reduce the estimation uncertainty. The objective

function is a simple standard deviation between the expected number of point pairs PP and the realized
value in the i-th lag class PP, :

| & =
Dy, (S) = \/H—Z(PP,« - PP)? (3)
p i=1
where § is a set of sampling points and 7, is the number of lag classes.
The function ®,,,(S) is normalized as a coefficient of variation (CV)) through division by PP :

P (S)= —‘D%ES) (4)
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where the PP value can approximated by the following:

I
" (D,,/LS) ©®)
where Dmax 1s the maximum distance in the study area and LS the lag size. A rule of thumb is to multiply
the number of lag classes by the lag size, which should equal approximately half of the maximum
distance in the region. N, denotes the total number of paired points and is given by N, =N(N-1)/2,

where N denotes the number of samples.
3.1.2. Sub-Criterion to Minimize the Estimation Variance

Normalization is difficult for the existing SP method based on a free model, such as MMSD, because
we have little understanding of the statistical characteristics of objective function (e.g., mean, maximum
and minimum). Thus, we need to develop a normalized SP criterion that can be compared with the
WM criterion.

Y fantis et al. [31] confirmed that an equilateral triangle-shaped sampling network reduces estimation
variance relative to a square or hexagonal network, and the best results are achieved when the regular
point pattern forms equal-area Delaunay triangles. However, the measure of regularity is not sensitive
to the area variance. With this in mind, a method to minimize the difference between the actual Delaunay
triangle side length and the expected length (the MDS criterion) is proposed. The MDS is defined the
same as in the WM criterion, i.e., as a standard deviation with the following form:

D)5 (S) :\/inz(SLf ~5SLy’ ©)

n

s i=1
where SL, is the i-th side length of the Delaunay triangle network generated by the point set S, and the

Delaunay triangle diagram is calculated by Fortune [32]. SL is the desired side length. The MDS
criterion is chosen for the SP method, and @5, is defined as follows:

o S
q)gz;)rm (S) — M%( ) (7)

where @, is normalized as CV though division by SL . Because Thiessen polygons generated by
equilateral Delaunay triangles are equal-area in an infinite region, we can approximate the SL value
as follows:

< [23_ 4
SL = Txﬁ (8)

where 4 denotes the area of study region and N is the total number of samples. 4/N is the approximate

area of the Thiessen polygons.

3.1.3. Determination of Weight Coefficients

Both ®,,, and ®,,,, are converted to CV, and the weight coefficients w in Equation (1) are calculated

with the following equation:
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iCVl_ ©)

where wi and CVi are the weight coefficient and the coefficient of variation of the i-th indicator,

N
respectively, and n is the number of indicators. Equation (9) implies that > w, =1. The two weight
i=1

values in Equation (1) are not constant; their values change with CV; during the optimization process,
but their sum is equal to 1.

3.1.4. Optimization Algorithm

Our goal is to develop an optimal sampling scheme with a fixed number of sampling points via
minimization of the @, , .. value. It is necessary to find an effective way to optimize the objective
function. In this paper, the simulated spatial annealing optimization algorithm (SS4) is employed to
optimize a global sampling scheme [19,25,27,33-35]. SS4 is a probabilistic method based on the

Metropolis selection criterion [36], which can be written as follows:
P (S, = S =1 I D@ pia (1) S @i (S;)

hybrid (Si) B q)hybrid (Si+1)
T

(10)

()
Fr(S; = 8;41) =exp( ) 1 DPoia (Si1) > D ()

where T represents the annealing temperature, a positive control parameter that decreases with
the optimization process, and i is the number of iterations. The parameter 7 is calculated by the

follow equation:
T, =al (11)

where « is a parameter determined by users as a value slightly less than 1. In this paper, the « value is 0.95.
3.2. Generation of a Random Two-Dimensional Field for Validation
3.2.1. Unconditional Geostatistical Stochastic Simulation

To evaluate the ability of this proposed hybrid criterion to describe the spatial distribution
characteristics of a regional variable, a two-dimensional stationary and isotropic field with values
defined on the grid (x, y) with x=1, 2, ---, X; y=1, 2, ---, Y is generated by stochastic simulation. The
grid values are simulated using a sequential Gaussian simulation, in which ordinary kriging is used to
estimate the local conditional probability distribution (LCPD) [37,38]. The simulation procedure
requires the generation of spatial correlation values corresponding to a specified variogram or
correlogram. Several models can be used for variogram modeling. In this study, we select the exponential
model to express the spatial variation:

y(h) = ¢, +c(1-e7") (12)

where co is the nugget, c is the sill and a is the range.
Assuming that a regional variable obeys the normal distribution with mean x and standard deviation

o , the simulated value in each grid is given by the following equation [38]:
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z(x,y) =xp-std(x,y)+mean(x,y) (13)

where mean(x, y) and std (x, y) are the kriging-based estimated mean and standard deviation for the
grid (x, y), respectively. xp is drawn from the standard normal distribution and computed by the
following equation:

xp = gauinv(p) (14)
where gauinv is the numerically approximated inverse of the standard normal distribution function [39]

and p, which represents a probability distribution function value, is a random number in the range 0—1.

Figure 3. Examples of the simulation fields with 95 x 95 grids produced by the variogram
with different parameter combinations.
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The LCPD on the grid (x, y) is estimated by searching all nearby grids with known value in the
dependence distance. If there are less than 10 nearby grids, a value for the grid (x, ) is randomly chosen
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from the normal distribution N (u«, 0). Each simulated datum becomes conditioning data for the next

simulation step until all grids are simulated.
Setting # = 0 and o =1, a variogram model of si//l = 1 is specified. The grid size is 40 m, and

the number of grids is 95 x 95 for Regions A and B. In total, 50 realizations are generated for each of
15 parameter combinations of an exponential variogram model. Figure 3 shows one realization for
each variogram.

3.2.2. Assessment Index

To validate the representativeness of samples, the MAE (mean absolute error) is defined to represent
the degree of bias:

MAE=1%

no=

Y -Y) (15)

where Y, is the prediction and ¥, is the true value.

After obtaining the experimental variogram, a curve is fitted for spatial interpolation. To compare the
fitted curve with the true one, the RE (relative error) is defined as follows:

range
J

F(x|plaPZa"')_F*(x|prap;:”')‘
J-range
0

where F and F~ represent the true and fitted variograms with different parameters p, respectively.

x100% (16)

F(x|p1,p2,~~)|

For the estimated block size, the prediction accuracy is usually assessed by the block kriging variance
(BKYV) as follows:

BKV =03 -w'D-pu (17)

where BKV is the estimated variance for the block 4, 0 is the area-to-area covariance over Area 4,

is the Lagrange multiplier and D is a vector based on the estimated point-to-area covariance. To compare
with the estimated fields from the different variograms and block sizes, the mean normalized BK Vs

(MBKVnorm) 1s calculated by the minimum-maximum normalization method:
i BKV,—BKV, .

1
NS BKV.__—BKV (18)

min

MBK V}’IO}’WI =

where N is the number of estimation grids. BKV,, .. and BKYV,

min

are the maximum and minimum BKV,
respectively. The BKYV; is the block kriging variance in the i-th grid.
Kriging variance only represents the estimation uncertainty, hence the similarity between the

estimated field and the true field, and is defined as follows:

F(G S)=Li(l—ﬂ)x100% (19)
’ N4 Max(g; —s;)

where G and S are histograms of two images. One image is simulated by stochastic simulation, and
another is estimated by kriging. The image value is divided into N bins. The variables g; and s, are

average values in the i-th bin.
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4. Results
4.1. Performance Test of Hybrid Criterion

As shown in Figure 4, there is a large contradiction between the spatial distributions of the WM and
MDS criteria. WM is favorable for modeling spatial variation, but causes excessive aggregation, which
negatively affects spatial estimation. MDS insufficiently captures the spatial variation due to the lack of
information at short lag classes. Additionally, points near the boundaries do not have enough neighbors,
leading to biases at the corners in MDS. This problem can be solved though initializing a few points in
the corners.

The results of the hybrid optimal criterion are more or less similar to designs that are optimized by
either WM or MDS. Though the hybrid model does not perfectly inherit all advantages of the
sub-criteria, their defects are remedied. Compared to WM, the spatial distribution of samples generated
by the hybrid criterion is superior for spatial statistical inferences, and compared to MDS, the distribution
of samples in lag space is more complete.

Figure 4. Differences in spatial distribution, number of paired points and values of objective
function between three optimization criteria.
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Because the initial values of both sub-criteria are different, the spatial distribution of samples will
tend toward the criterion with the smaller initial value if equal weights are assigned to each
sub-criterion. In this test, the final results will tend toward the WM criterion. Hence, variable weight
coefficients are reasonable during the entire optimization process.
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4.2. EHWSN Optimizationl5

We have proposed a hybrid model-based optimization method with two sub-criteria for parameter
estimation and spatial statistical inference. This method is applied to the EHWSN sampling design in
the middle reaches of HRB. The relevant parameters are as follows: PP in Equation (5) is equal to 200
and SL in Equation (8) is equal to 130 m in Region A and 380 m in Region B. The size of each field
block is approximately 40 m x 40 m. To avoid having more than one node in a field block (only the
variability between fields is considered), a pair of points separated by less than 40 m is forbidden. The
lag separation distance should coincide with the field spacing; thus, the lag size is set equal to 40 m.
Lag classes less than the dependence distance should be given priority. However, it is difficult to select
a suitable distance. Therefore, we attempt to obtain the dependence distance using the TVDI
(Temperature-Vegetation Dryness Index) derived from a Thematic Mapper (TM) image. This image
substitutes for soil moisture [40], because there is no prior high-resolution information of the soil
moisture distribution. The TVDI can approximately represent the spatial distribution of soil moisture.

Ultimately, the dependence distance is set equal to 680 m (Figure 5). The final result is shown in
Figure 6. Optimization decreased the objective function @ from 0.84 to 0.28. The final values of

@ and @, are 0.24 and 0.31, with weight coefficients of 0.44 and 0.56, respectively.

hybrid

Figure 5. Experimental variogram (circles) and fitted curve (black line) of the
Temperature-Vegetation Dryness Index (TVDI).
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Figure 6. Optimized distribution of EHWSN nodes in the observation matrix (a) and the
number of paired points in each lag class (b).
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4.3. Validation

The optimization results of EHWSN need to be verified using simulated fields from several
perspectives, including the representativeness, the accuracies of parameter estimation and spatial prediction.

4.3.1. Representativeness

The inferred values of target variables from spatial predictions at unsampled locations are based on
the hypothesis that samples are representative. If data are sampled in an unrepresentative manner, the
biased data cannot represent the overall properties in the area of interest, and the spatial predictions based
on geostatistical techniques might be worse than those based on simple methods, such as inverse distance
interpolation, surface interpolation and splines. To verify the representativeness, we compare the means
and standard deviations (SD) between the samples and the populations from 50 stochastic realizations
of each of 15 variogram parameter combinations. MAE values for mean and SD closing to zero indicate
spatially representative samples. As shown in Figure 7, the scatterplot represents the degree of biases for
15 types of simulated fields. The final optimization results in the middle reaches of HRB exhibits good
representativeness, and the maximum MAE is approximately 0.12. The representativeness of samples
gradually increases with increasing the nugget and decreasing range. Intuitively, samples from fields
with smaller nuggets and larger ranges should be more representative, but the results in Figure 7 are the
opposite. This is because there are intensive observation nodes in Region A. Table 1 lists the MAEs of
samples in Regions A and B. Large differences are observed between both regions. Regardless of the
variability, samples in Region B with relatively uniform spatial distributions have low MAE values for
different simulated fields. The MAE index is sensitive to the variability in regional variables when the
spatial distribution of samples is excessively concentrated. Although cluster observations may lead to a
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greater degree of deviation from the population, the local cluster points is necessary for estimating

variogram parameters.

Figure 7. Scatter diagrams of the means (circles) and standard deviations (black dots).

The Y- and X-axes represent the samples and the population, respectively.
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Table 1. Biases of the means and standard deviations between the samples and the population.

0.0 0.3 0.6
ugget
Range Region A Region B Region A Region B Region A Region B
Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD
100 m 0.138  0.059 0.071  0.055 0.130  0.063 0.074 0.055 0.121  0.068 0.076  0.055
200 m 0.212  0.079 0.063  0.054 0.185 0.066 0.067 0.053 0.151 0.062 0.072  0.053
300 m 0.271 0.105 0.060  0.053 0.231 0.083 0.065 0.051 0.179  0.065 0.071  0.051
400 m 0.325 0.133 0.058  0.052 0.272  0.101 0.064 0.050 0.201  0.072 0.070  0.050
500 m 0.368 0.160 0.056  0.050 0.312 0.116 0.063  0.049 0.218 0.076 0.069 0.050
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4.3.2. Parameter Estimation

To capture the spatial variability, a specified number of paired points for 16 lag classes (Figure 6) are
optimized to estimate the variogram. According to previous experience, at least 50 paired points are
required [41]. Pairs of points in lag classes of 60 m, 100 m, 140 m, 180 m and 220 m are generated in
the intensive Region A.

The dispersion and mean of the experimental variogram at different scales is described in Figure 8.
With variations in the nugget and range, differences are generated in the dispersion at different scales.
Small scales (60 m, 100 m and 140 m) especially exhibit large changes in dispersion. When the range
increases, the dispersion of small scales decreases, because of the increased structure property, while at
larger scales (>140 m), the dispersion increases slightly. At all estimated scales, the dispersion changes
due to nugget variations are the opposite of the changes due to variations in range.

Figure 8. Experimental (black line) and theoretical (black dots) variograms. The boxplot
represents the dispersion for the experimental variogram. The boxes with lines denote the
median (thick line), lower quartile and upper quartile values (dotted lines).
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The trend of the average line of the experimental variogram is close to the theoretical function, and it
excellently expresses the spatial variability. When the structural characteristic is dominant (the
proportion of the partial sill to sill is larger than that of the nugget to sill), the biases between theoretical
and experimental variograms is low at small scales and high at large scales. However, with the growth
of randomness, the biases at estimated scales are opposite.

To test the accuracy of estimated variogram parameters, the RE between the true variogram and the
fitted curve is calculated (Table 2). For a dependence distance of 100 m, the estimated parameters are
unavailable, because only one experimental variogram value in the distance of less than 100 m is used
to fit the curve. With that exception, the relative error increases with increases in range when there is no
non-spatial variance (Nugget = 0). When the major component of variance is non-spatial (Nugget = 0.6),
the relative error of simulated fields decreases with increasing range. The maximum relative error is less
than 6%, and the mean relative error is 3%.

Table 2. Accuracy of parameter estimations.

ugget 0.0 0.3 0.6
Range Nugget* Sill* Range* RE Nugget * Sill * Range* RE Nugget * Sill * Range * RE

100 m 0.63 0.99 82.59  3.98% 0.88 0.99 181.61 3.59% 0.99 099 9996 2.76%
200 m 0.31 1.00  262.33  2.54% 0.55 1.00 258.71 2.21% 0.75 0.99 220.66 1.86%
300 m 0.21 1.01 39543 2.87% 0.46 1.00  368.75 1.95% 0.69 0.99 300.00 1.80%
400 m 0.16 1.00 516.82 4.58% 0.42 0.99 473.47 2.34% 0.69 099 422.18 1.69%
500 m 0.13 1.00  662.94 5.69% 0.40 0.99 589.32 2.71% 0.67 099 483.18 1.63%

Note: * means the estimators of variogram parameters.

4.3.3. Spatial Prediction

After estimating the variogram, the interpolation accuracy also needs to be evaluated. Generally, the
interpolation accuracy is evaluated by the kriging variance, which expresses the estimated uncertainty.
We apply block kriging to obtain the estimated fields with eight grid sizes ranging from 40 m to
320 m. If the variogram parameters and estimated block sizes have been determined, the kriging variance
is only related to the spatial distribution of samples and is independent of the sample values. As shown
in Figure 9a, for each type of estimation field, the mean normalized kriging variances (MBKViorm) in
Equation (18) become small with increasing estimation scale. This is the spatial variance within a larger
block that is cancelled out, leaving less uncertainty. For each estimation scale, the MBKVorm becomes
large with decreasing dependence distance or increasing nugget value, which leads to the growth
of uncertainty.

Kriging variance, however, cannot express the biases between true and estimated values. Therefore,
we use another index to evaluate the estimation accuracy. The similarity between the simulated field and
the estimated field with same block sizes is calculated by Equation (19). The similarity changes with
estimation scales and parameters of variograms is opposite of the MBKVnom changes. As Figure 9b
shows, the estimated field with the lowest randomness and maximum estimation scale (320 m) shows a
maximum similarity of about 70% to the true field. In contrast, the estimated field with the strongest
randomness and minimum estimation scale (40 m) shows a minimum similarity of about 32%.
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Figure 9. Normalized kriging variance (a) and similarities (b) between the simulated and
estimated fields with different block sizes.
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5. Conclusions and Discussions

A hybrid sampling method is proposed to optimize samples for both spatial estimation and spatial
interpolation when there is lack of prior information on the target variable. This hybrid method is used
to optimally design the EHWSN in the HRB, and its effectiveness has been verified in terms of
representativeness, parameter estimation and prediction accuracy, using various simulation fields.

The samples collected by the hybrid sampling method show the excellent representativeness. The
relatively even spatial sampling in Region B enhances the representativeness of samples for different
types of simulation fields. Though the nested samples in Region A introduce a slight sampling bias, it
can improve the estimation accuracy of variogram parameters at small scales.

For variogram modeling, the stronger a regional variable shows spatial randomness, the more paired
points are needed to capture the variability at small scales. When the structural features of a regional
variable are obvious, more paired points are needed at larger scales. In this research, reliable prior
information about the target variable is unavailable; therefore, using the equal treatment of paired points
in each lag to estimate the variogram parameters is reasonable.

One of our objectives is to estimate ground truth at different remote sensing pixel scales. Both accurate
parameter estimation and high sample representativeness are helpful for achieving this goal. The sampling
design for estimation at block sizes exceeding 240 m has higher similarities. The differences of fluctuations
between similarity curve lines with different block sizes indicates the influences of variogram parameters
variation on the estimation accuracy. With the growth of the estimation scale, the amplitudes of fluctuations
become small, which means that variogram parameters have less impact on the estimation accuracy. This
information is meaningful, and if we estimate a quite large block, it is not necessary to be overly concerned
with the estimation of variogram parameters. Instead, the sampling design may make more contributions
to enhance the representativeness of samples.

For meeting multi-scale estimation requirements, the nested structure is designed. However, the
cluster points may lead to some problems, such as decreasing the representativeness of the samples,
enhancing the bias in the estimated variability at small scales and bringing a negative effect on the spatial
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prediction. Ideally, the multi-cluster sampling, that points with a uniform spatial distribution are
combined with multi-cluster points evenly distributed across the study area, can effectively eliminate
these problems. However, such a sampling design needs to encompass a large number of samples. Due
to budget limitations, only one point cluster is produced in our experiments. The validations prove that
the nested sampling design is effective for both variogram modeling and spatial prediction based on
limited samples.

In addition, unbiased sampling is important in the optimal design. In this work, the hybrid criterion
considers both parameter estimation and spatial statistical inference. However, there is no quantitative
expression to represent in the objective function. Therefore, future research should investigate how to
quantify representation during the optimization process.
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