Soil texture dataset of the Heihe River Basin (2011)

The soil texture dataset of the Heihe River Basin (2011) is compiled by LIU Chao et al. (2011) by using the SOLIM model. Based on the famous Jenny equation of soil science, and according to the environmental factors such as climate, biology, topography and parent material, knowledge mining and fuzzy logic are combined on the basis of existing soil texture maps and soil profiles in Heihe River Basin. It is produced and integrated with thematic maps of glaciers and lakes. According to the different characteristics of the six ecological zones in Heihe River Basin, different mapping methods are used in the upper, middle and lower reaches. According to the different characteristics of six ecological zones in Heihe River Basin, different mapping methods are used in the upper, middle and lower reaches. The data is in grid format with 1KM spatial resolution and WGS-84 projection. Soil texture attributes and categories represent 0-30 cm topsoil texture attributes, derived from depth-weighted averages. The texname in the attribute table indicates the soil texture type name. Sandrange, siltrange, and clayrange respectively represent the sand, powder, and clay content ranges in the USDA soil triangle. Sandaverage, siltaverage and clayaverage are taken from the measured soil profiles, the average content of sand, silt and clay particles as the sand, silt and clay content of the soil type. (Note: The soil particle content of clay loam is derived from the soil quality map of Beijing Normal University). The soil texture classification standard is USDA, the sand grain size is defined as (2~0.05mm), the silt particle size is (0.05~0.002mm) and the clay size is defined as (<0.002mm).

HiWATER: Dataset of flux observation matrix (eddy covariance system of Upper Daman Superstation) of the MUlti-Scale Observation EXperiment on Evapotranspiration over heterogeneous land surfaces 2012 (MUSOEXE-12)

This dataset contains the flux measurements from the Daman superstation eddy covariance system (EC) at the highest layer in the flux observation matrix from 30 May to 15 September, 2012. The site (100.37223° E, 38.85551° N) was located in a cropland (maize surface) in Daman irrigation district, which is near Zhangye, Gansu Province. The elevation is 1556.06 m. The EC was installed at a height of 34 m; the sampling rate was 10 Hz. The sonic anemometer faced north, and the separation distance between the sonic anemometer and the CO2/H2O gas analyzer (CSAT3&Li7500A) was 0.17 m. Raw data acquired at 10 Hz were processed using the Edire post-processing software (University of Edinburgh, http://www.geos.ed.ac.uk/abs/research/micromet/EdiRe/), including spike detection, lag correction of H2O/CO2 relative to the vertical wind component, sonic virtual temperature correction, coordinate rotation (2-D rotation), corrections for density fluctuation (Webb-Pearman-Leuning correction), and frequency response correction. The EC data were subsequently averaged over 30 min periods. Moreover, the observation data quality was divided into three classes according to the quality assessment method of stationarity (Δst) and the integral turbulent characteristics test (ITC), which was proposed by Foken and Wichura [1996]: class 1 (level 0: Δst<30 and ITC<30), class 2 (level 1: Δst<100 and ITC<100), and class 3 (level 2: Δst>100 and ITC>100), representing high-, medium-, and low-quality data, respectively. In addition to the above processing steps, the half-hourly flux data were screened in a four-step procedure: (1) data from periods of sensor malfunction were rejected; (2) data before or after 1 h of precipitation were rejected; (3) incomplete 30 min data were rejected when the missing data constituted more than 3% of the 30 min raw record; and (4) data were rejected at night when the friction velocity (u*) was less than 0.1 m/s. There were 48 records per day; the missing data were replaced with -6999. Moreover, suspicious data were marked in red. The released data contained the following variables: data/time, wind direction (Wdir, °), wind speed (Wnd, m/s), the standard deviation of the lateral wind (Std_Uy, m/s), virtual temperature (Tv, ℃), H2O mass density (H2O, g/m^3), CO2 mass density (CO2, mg/m^3), friction velocity (ustar, m/s), stability (z/L), sensible heat flux (Hs, W/m^2), latent heat flux (LE, W/m^2), carbon dioxide flux (Fc, mg/ (m^2s)), quality assessment of the sensible heat flux (QA_Hs), quality assessment of the latent heat flux (QA_LE), and quality assessment of the carbon flux (QA_Fc). In this dataset, the time of 0:30 corresponds to the average data for the period between 0:00 and 0:30; the data were stored in *.xlsx format. For more information, please refer to Liu et al. (2016) (for multi-scale observation experiment or sites information), Xu et al. (2013) (for data processing) in the Citation section.

HiWATER: Dataset of the spectral reflectance in the middle of Heihe River Basin

This dataset contains the spectra of white cloth and black cloth obtained in the simultaneous time during the airborn remote sensing which supports the airboren data preprocessing as CASI, SASI and TASI , and the spetra of the typical targets in the middle reaches of the Heihe River Basin. Instruments: SVC-HR1024 from IRSA, ASD Field Spec 3 from CEODE, Reference board Measurement method: the spectra radiance of the targets are vertically measured by the SVC or ASD; before and after the target, the spectra radiance of the reference board is measured as the reference. This dataset contains the spectra recorded by the SVC-HR1024 ( in the format of .sig which can be opened by the SVC-HR1024 software or by the notepad ) and the ASD (in the format of .asd), the observation log (in the format of word or excel), and the photos of the measured targets. Observation time: 15-6-2012, the spectra of typical targets in the EC matrix using SVC 16-6-2012, the spectra of typical targets in the wetland by SVC 29-6-2012, the spectra of typical vegetation and soil in Daman site and Gobi site by ASD 29-6-2012, the spectra of white cloth and black cloth by ASD which is simultaneous with the airborne CASI data 30-6-2012, the spectra of vegetation and soil in the desert by ASD 5-7-2012, the spectra of white cloth and black cloth by ASD which is simultaneous with the airborne CASI data 7-7-2012, the spectra of corn in the Daman site for the research of daily speral variation. 8-7-2012, the spectra of white cloth and black cloth by ASD which is simultaneous with the airborne CASI data 8-7-2012, the spectra of corn in the Daman site by ASD for the research of daily speral variation 9-7-2012, the spectra of corn in the Daman site by ASD for the research of daily speral variation 10-7-2012, the spectra of corn in the Daman site by ASD for the research of daily speral variation 11-7-2012, the spectra of corn in the Daman site by ASD for the research of daily speral variation. The time used in this dataset is in UTC+8 Time.

HiWATER: Dataset of flux observation matrix (NO.3 large aperture scintillometer) of the MUlti-Scale Observation EXperiment on Evapotranspiration over heterogeneous land surfaces 2012 (MUSOEXE-12)

This dataset contains the flux measurements from the large aperture scintillometer (LAS) at site No.3 in the flux observation matrix. There were two types of LASs at site No.3: German BLS900 and Netherland Kipp&zonen. The observation periods were from 6 June to 20 September, 2012, and 19 June to 20 September, 2012, for the BLS900 and the Kipp&zonen, respectively. The north tower is placed with the receiver of BLS900 and the transmitter of Kipp&zonen, and the south tower is placed with the transmitter of BLS900 and the receiver of Kipp&zonen. The site ( (north: 100.373° E, 38.883° N; south: 100.372° E, 38.856° N) was located in the Yingke irrigation district, which is near Zhangye, Gansu Province. The elevation is 1552.75 m. The underlying surface between the two towers contains corn, greenhouse, and village. The effective height of the LASs was 33.45 m; the path length was 3111 m. Data were sampled at 1 min intervals. Raw data acquired at 1 min intervals were processed and quality-controlled. The data were subsequently averaged over 30 min periods. The main quality control steps were as follows. (1) The data were rejected when Cn2 was beyond the saturated criterion (Cn2>3.36E-14). (2) Data were rejected when the demodulation signal was small (BLS900: Average X Intensity<1000; Kipp&zonen: Demod<-20 mv). (3) Data were rejected within 1 h of precipitation. (4) Data were rejected at night when weak turbulence occurred (u* was less than 0.1 m/s). The sensible heat flux was iteratively calculated by combining with meteorological data and based on Monin-Obukhov similarity theory. There were several instructions for the released data. (1) The data were primarily obtained from BLS900 measurements; missing flux measurements from the BLS900 were filled with measurements from the Kipp&zonen. Missing data were denoted by -6999. (2) The dataset contained the following variables: data/time (yyyy-mm-dd hh:mm:ss), the structural parameter of the air refractive index (Cn2, m-2/3), and the sensible heat flux (H_LAS, W/m^2). (3) In this dataset, the time of 0:30 corresponds to the average data for the period between 0:00 and 0:30; the data were stored in *.xlsx format. Moreover, suspicious data were marked in red. For more information, please refer to Liu et al. (2016) (for multi-scale observation experiment or sites information), Xu et al. (2013) (for data processing) in the Citation section.

HiWATER: Land cover map of the Heihe River Basin

The datasets of “Land Cover Map of Heihe River Basin” provide monthly land cover classification data in 2012-2013. The HJ-1/CCD data with both high spatial resolution (30 m) and high temporal (2 days) frequency was used to construct the time series data. The NDVI curves from the time series HJ-1/CCD data can depict the variation of typical land surface. Different land use type has different NDVI curve. Rules were set to extract every land use type information. The datasets of “Land Cover Map of Heihe River Basin” hold the traditional land use types including water bodies, urban and built-up, croplands, evergreen coniferous forests, deciduous broadleaf forests and so on. Crop type classification (including maize, spring wheat, highland barely, rape and so on), snow and ice and glaciers information updates, make the datasets more detailed. Compared with previous land cover map and other products, the classification result of the datasets is visually bette. Especially in middle stream, the accuracy of crop classification is quite high compared with the data from the ground campaign. The accuracy of land cover map of the datasets in 2012 was evaluated using very high spatial resolution remote sensing data within Google Earth and data from campaign, and the overall accuracy can be as high as 92.19%. In a word, the datasets of “Land Cover Map of Heihe River Basin” is not only high in overall accuracy, but also more detailed in crop fine classification. Furthermore, it updated some new classes like glaciers and snow. The datasets of “Land Cover Map of Heihe River Basin” are consequently the classification datasets with the highest accuracy and most detailed information up to now.

HiWATER: Dataset of flux observation matrix (automatic meteorological station of No.14) of the MUlti-Scale Observation EXperiment on Evapotranspiration over heterogeneous land surfaces 2012 (MUSOEXE-12)

This dataset contains the automatic weather station (AWS) measurements from site No.14 in the flux observation matrix from 6 May to 21 September, 2012. The site (100.35310° E, 38.85867° N) was located in a cropland (maize surface) in Yingke irrigation district, which is near Zhangye, Gansu Province. The elevation is 1570.23 m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity (HMP45D; 5 m, towards north), air pressure (CS100; 2 m), rain gauge (TE525M; 10 m), wind speed and direction (034B; 10 m, towards north), a four-component radiometer (CNR4; 6 m, towards south), two infrared temperature sensors (IRTC3; 6 m, vertically downward), soil temperature profile (AV-10T; 0, -0.02, -0.04, -0.1, -0.2, -0.4, -0.6, and -1.0 m), soil moisture profile (ECh2o-5; -0.02, -0.04, -0.1, -0.2, -0.4, -0.6, and -1.0 m), and soil heat flux (HFT3; 3 duplicates with one below the vegetation and the other between plants, 0.06 m). The observations included the following: air temperature and humidity (Ta_5 m and RH_5 m) (℃ and %, respectively), air pressure (press, hpa), precipitation (rain, mm), wind speed (Ws_10 m, m/s), wind direction (WD_10 m, °), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing longwave radiation; Rn, net radiation; W/m^2), infrared temperature (IRT_1 and IR_2, ℃), soil heat flux (Gs_1, below the vegetation; Gs_2 and Gs_3, W/m^2), soil temperature profile (Ts_0 cm, Ts_2 cm, Ts_4 cm, Ts_10 cm, Ts_20 cm, Ts_40 cm, Ts_60 cm, and Ts_100 cm, ℃), and soil moisture profile (Ms_2 cm, Ms_4 cm, Ms_10 cm, Ms_20 cm, Ms_40 cm, Ms_60 cm, and Ms_100 cm, %). The data processing and quality control steps were as follows. (1) The AWS data were averaged over intervals of 10 min; therefore, there were 144 records per day. The missing data were filled with -6999. (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) In this dataset, the time of 0:10 corresponds to the average data for the period between 0:00 and 0:10; the data were stored in *.xlsx format. (5) Finally, the naming convention was AWS+ site no. Moreover, suspicious data were marked in red. For more information, please refer to Liu et al. (2016) (for multi-scale observation experiment or sites information), Xu et al. (2013) (for data processing) in the Citation section.

HiWATER: Dataset of BRDF observations in the midstream of the Heihe River Basin

This dataset includes the BRF observations of the corn in the Daman site (100.372° E, 38.855° N) on 29-6-2012) and the desert site around the airport (100.700° E, 38.762° N) acquired on 8-7-2012. Instruments: SVC-HR1024 from IRSA, reference board from IRSA, the multi-angular auto-observing shelf developed by BNU Measurement methods: we measure the BRF in the unit of observing plane, i.e. fix the view azimuth then change the view zenith angle to measure the target spectra, including along the principle plane and cross the principle plane at different sun angle. Besides, the planes along and cross the ridge of corn are also measured, specific planes like 0° , 90° away from the north are also observed in the desert. In each observing plane, view zenith angles from -60° to 60° with a interval of 10° are observed. The fiber optic probe with a view field of 25° is fixed at the multi-angular shelf at a height of 5 meters. The spectrum measured by the SVC-HR1024 is ranged from 350 nm-2500 nm. In each plane measurement , the spectral radiance of the reference board is measured first, then the target radiance of different view zenith angle is measured, finally the reference board radiance is measured again. Dataset contains the originally recorded data like the spectra (in sig format) and the log files (in txt format), and the processed data BRDF (in txt format and jpg format). The processed data in the format of txt, contains the observing geometries and corresponding reflectance spectra from 350 nm to 2500 nm. The processed data in the format of jpg, is a quick view of the BRF at 550 nm, 650 nm and 850 nm of each observing plane.