Stream flow observations of the east branch in Hulugou small watershed (July 2012-May 2013)

1、 Data overview: use solinst leveloger automatic water level gauge to observe river water level, calculate flow data through water level flow curve, and manually observe the flow through self-made flow weir (see thumbnail). Due to the limited amount of manual observation data, further supplementary observation is needed to improve the water level discharge curve. 2、 Data content: we manually observe the water level and flow data of the two sections. The first section: the exit of area III divided by Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, the boundary point between cold desert zone and cold meadow zone, where the valley is deep and the bedrock is exposed. Coordinates of observation points (99 ° 53 ′ 37 ″ e, 38 ° 13 ′ 34 ″ n). The observation period is from July 21, 2012 to May 6, 2013. The observation frequency of automatic observation data is 1 time / 30 minutes from July 21 to July 25, 2012. 1 time / 15 minutes from July 25, 2012 to May 6, 2013. After September 15, 2012, there was an error in the automatic monitoring data of the observation point. The reason may be that the flow of the river channel became smaller, the probe was exposed to the air, and the water level gauge could not correctly reflect the change of the flow of the river channel. At the same time, the temperature decreased after September, and the river channel froze in winter. There was no automatic monitoring flow data during this period. The second section: the exit of No.2 area divided by Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, with flat terrain, is located at the catchment of the outlet of the alluvial delta Valley, and the south side is the shrub area. A small flow weir is built. The observation point coordinates (99 ° 52 ′ 58 ″ e, 38 ° 14 ′ 36 ″ n), and the observation frequency of automatic observation data is 1 time / 15 minutes. The observation period is from July 21, 2012 to May 6, 2013. After the observation point entered September, the river flow gradually decreased and there was no water in the river. At this time, the reading of water level gauge can not correctly reflect the change of river discharge. At the same time, our field experience shows that from September to May of the next year, the observation point is basically in a state of no water.

Evaporation data under alpine shrubs in Hulu watershed (2013)

This data set is the surface evapotranspiration data of Four Typical Shrub Communities in hulugou watershed. The observation period is from July 16 to August 23, 2013, which is the daily scale data. The data content includes precipitation data, evaporation and infiltration data observed by lysimeter. The data set can be used to analyze the evapotranspiration data of alpine shrub and forest. Data quality information: data quality is high, daily evapotranspiration data observation is complete. Data source description: a small lysimeter with an inner diameter of 25 cm and a depth of 30 cm was selected for evapotranspiration under the canopy. Two lysimeters were set up in each sample plot of evapotranspiration under the Bush, and one lysimeter was set up for each kind of Bush in the transplanting experiment. The undisturbed undisturbed soil column with the same height as the barrel shall be placed in the inner barrel during the layout, and the outer barrel shall be buried in the soil. During the embedding, the outer barrel shall be 0.5-1.0 cm higher than the ground, and the outer edge of the inner barrel shall be designed with a 2.0 cm wide rain shield to prevent the surface runoff from entering the lysimeter. Lysimeter was set up in the nearby meteorological station to measure the evapotranspiration of grassland, and a small evapotranspiration meter with an inner diameter of 25 cm and a depth of 30 cm was set up in the Picea koraiensis forest sample plot to measure the evaporation under the forest. All lysimeters shall be weighed on time at 20:00 every day (electronic balance sensing capacity is 1.0 g, which is equivalent to 0.013 mm evaporation). During observation, windproof treatment shall be done to ensure the accuracy of measurement. Data processing method: evapotranspiration is mainly calculated by mass conservation in lysimeter method. According to lysimeter design principle, evapotranspiration is mainly determined by mass difference in two consecutive days. Because it is weighed every day, it is calculated by water balance.