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In this work, a dual-pass data assimilation scheme is developed to improve predictions of surface flux. Pass 1 of the dual-pass 
data assimilation scheme optimizes the model vegetation parameters at the weekly temporal scale, and Pass 2 optimizes the 
soil moisture at the daily temporal scale. Based on ensemble Kalman filter (EnKF), the land surface temperature (LST) data 
derived from the new generation of Chinese meteorology satellite (FY3A-VIRR) are assimilated into common land model 
(CoLM) for the first time. Six sites, Daman, Guantao, Arou, BJ, Miyun and Jiyuan, are selected for the data assimilation ex-
periments and include different climatological conditions. The results are compared with those from a dataset generated by a 
multi-scale surface flux observation system that includes an automatic weather station (AWS), eddy covariance (EC) and large 
aperture scintillometer (LAS). The results indicate that the dual-pass data assimilation scheme is able to reduce model uncer-
tainties and improve predictions of surface flux with the assimilation of FY3A-VIRR LST data.  
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Accurate monitoring of surface fluxes over land surfaces is 
necessary for global climate change research, ecological 
environment management, and agricultural and water re-
source planning. The magnitude of the surface flux is largely 
determined by vegetation parameters, soil moisture and 
other states of the land surface. The major methods used for 
estimating surface fluxes are field measurement, remote- 
sensing-based methods, and land surface modeling. 

The variability in field measurements of surface flux has 
been documented over diurnal, seasonal, and inter-annual 
time scales (Liu et al., 2011). Certain permanent observation 

networks also have been constructed, such as the First In-
ternational Satellite Land Surface Climatology Project 
(ISLSCP) Field Experiment (FIFE) (Kanemasu et al., 1992), 
FLUXNET (Baldocchi et al., 2001), WATER (Li et al., 
2009) and HiWATER (Li et al., 2013). Direct observations 
from lysimeters, eddy covariance systems, Bowen ratio 
methods, and large aperture scintillometers, are necessary 
for increasing our understanding of water and energy bal-
ance at the land surface. However, these measurements are 
difficult to use for monitoring surface fluxes at the regional 
scale because they only produce either point or patch-scale 
data. 

Spatially distributed estimates of surface flux can be  
obtained from remote-sensing-based methods (Bastiaanssen 
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et al., 1998; Su, 2002; Liu et al., 2007). However, these 
methods are difficult to use for continuous monitoring of 
surface fluxes because the data derived from satellites are 
instantaneous and often contaminated by the presence of 
clouds. Land surface models have been rapidly developed to 
predict surface fluxes on continuous spatial and temporal 
scales with physical constraints (Dickinson et al., 1986; 
Sellers et al., 1996; Liou et al., 1999; Dai et al., 2003). 

Regardless of their specific model structures, all land 
surface models require observational data to calibrate their 
parameters and adjust their states. New techniques such as 
data assimilation are needed to integrate either field or re-
motely sensed observations with the models, thus improving 
model accuracy by correcting the model state variables and 
parameters (Liang, 2004; Liang and Qin, 2008). Data as-
similation has played an increasingly important role in im-
proving predictions of such land surface state variables as 
the leaf area index (Xiao et al., 2011), soil temperature pro-
file (Huang et al., 2008), soil moisture profile (Margulis et 
al., 2002), and other related variables, e.g., surface fluxes 
(Xu et al., 2011). 

To model surface fluxes at the land surface, the acquisi-
tion of accurate land surface temperatures is highly im-
portant. The land surface temperature can control the water 
and energy balances of the land surface. For the same mag-
nitude of solar radiation, lower land surface temperatures 
result from a wetland surface associated with relatively high 
latent heat flux and low sensible heat flux. Inaccurate sur-
face flux predictions are highly correlated with errors in 
land surface temperature estimates. Therefore, assimilation 
of land surface temperatures has become an important 
method for improving surface flux predictions from land 
surface models. Huang et al. (2008) improved the ground 
heat flux predictions in a land surface model with the as-
similation of MODIS land surface temperature products. 
The surface fluxes also can be obtained based on variational 
techniques and relatively simple models with the assimila-
tion of field-measured land surface temperatures (Boni et al., 
2001; Caparrini et al., 2004). Bateni et al. (2012) estimated 
soil and canopy surface fluxes with a dual-source data as-
similation scheme. Xu et al. (2011) improved surface flux 
predictions by assimilating remotely sensed land surface 
temperatures. Moreover, the surface energy balance algo-
rithm for land (SEBAL) or surface energy balance system 
(SEBS) can calculate instantaneous surface fluxes using 
meteorology data coupled with remotely sensed land sur-
face parameters. These estimates can, in turn, be assimilated 
into land surface models. Schuurmans et al. (2003, 2011) 
showed that the assimilation of remotely sensed evapotran-
spiration derived from SEBAL is useful in hydrological 
model calibration. Pipunic et al. (2008) preformed experi-
ments with the assimilation of land surface temperature, 
land surface soil moisture and surface fluxes derived from 
synthetic remote sensing data, and the greatest improve-
ments in the land surface fluxes were found with the assim-

ilation of remotely sensed surface fluxes. However, these 
researchers did not pay much attention to improving surface 
flux predictions using remotely sensed land surface temper-
atures.  

In a land surface model, the sensible and latent heat 
fluxes are diagnostic variables, and they are affected by 
many factors (e.g., model states and parameters). Thus, new 
data assimilation strategies should be introduced to estimate 
surface fluxes by optimizing both model states and parame-
ters. Data assimilation strategies that can simultaneously 
optimize the model states and parameters have been devel-
oped to estimate soil moisture profiles (Moradkhani et al., 
2005; Qin et al., 2009; Tian et al., 2009). However, the model 
parameters and states may not change at the same temporal 
scales. Thus, dual-pass data assimilation scheme was de-
veloped to optimize model parameters and states at different 
temporal scales. Yang et al. (2007) developed a dual-pass 
data assimilation scheme to improve soil moisture simula-
tions by optimizing both soil hydrological parameters and 
soil moisture. With the assimilation of microwave bright-
ness temperatures, the soil hydrological parameters related 
to soil moisture are calibrated first at the monthly temporal 
scale and the soil moisture data are subsequently updated at 
the daily temporal scale. The dual pass scheme was con-
structed with the SCE_UA algorithm (Duan et al., 1993) 
and has been applied by others (Lu et al., 2012; Zhao et al., 
2012). The current study constructed a dual-pass data as-
similation scheme with an ensemble Kalman filter (EnKF) 
(Evensen, 1994) to improve the surface flux predictions 
with assimilation of remotely sensed land surface tempera-
ture. Using the dual-pass data assimilation scheme, the soil 
moisture profiles and model vegetation parameters can be 
optimized with separate loops at different temporal scales. 
Pass 1 of the dual-pass data assimilation scheme optimizes 
the model vegetation parameters related to surface fluxes at 
a long temporal scale, similar to a parameter calibration 
procedure. Pass 2 of the scheme optimizes the soil moisture 
at a short temporal scale. 

As a new-generation Chinese polar orbiting meteorolog-
ical satellite, the FY-3 series consists of two experimental 
(FY-3A/B) and at least four operational satellites (FY-3C/ 
D/E/F). The FY-3 series is expected to have a service life 
that lasts until 2020. The main tasks of FY-3 satellites in-
clude providing meteorology parameters for numerical 
weather prediction, monitoring of global natural disasters, 
and monitoring global distributions of ice, snow and ozone. 
The FY-3A was launched in the year 2008. Visible and in-
frared radiometer (VIRR) is one of the 11 sensors mounted 
on the FY-3A satellite and has a nominal spatial resolution 
of approximately 1 km×1 km at the nadir. The FY-3A land 
surface temperature data will become the new data source 
for global water and energy balance research. This study 
carried out the first experiment to assimilate remotely sensed 
land surface temperatures (LST) derived from FY3A-VIRR 
into a land surface model. 
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Six Chinese flux observation sites with different land 
cover types (alpine meadow, grassland, cropland, and or-
chard) were selected to conduct the data assimilation ex-
periments. The six sites are located in three major nature 
zones (eastern monsoon area, western arid and semi-arid 
area, and Qinghai-Tibet alpine zone) which is representative 
in China. Moreover, the results from the experiments are 
compared with those from data generated by a multi-scale 
surface-flux observation system that includes an eddy co-
variance (EC) system, a large aperture scintillometer (LAS) 
and an automatic weather station (AWS). 

1  Methodology 

The dual-pass data assimilation technique employed in this 
study optimizes the model states and parameters inde-

pendently. The data assimilation scheme is illustrated in 
Figure 1. The dual-pass data assimilation scheme includes 
the model operator (CoLM), the data assimilation algorithm 
(EnKF), and forcing and ancillary data. The two passes of 
the scheme assimilate the remotely sensed land surface 
temperatures (LST) derived from the FY3A satellite. With 
the assimilation of the FY3A-VIRR LST data, Pass 1 is 
used to optimize the model parameters at the weekly tem-
poral scale, and Pass 2 is used to optimize the soil moisture 
at the daily temporal scale. For Pass 1, the default model 
parameters are used in CoLM for the first week. At the end 
of the first week, the model parameters are updated by 
minimizing the difference between the predicted LST and 
FY3A-VIRR LST. In the second week, the optimal model 
parameters estimated from the previous week are used 
throughout the entire week, and the parameters are updated 
at the end of the week and used in the following week. In  

 

Figure 1  Flowchart of dual-pass data assimilation scheme. 
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Pass 2, together with the optimal model parameter estimates 
(default model parameters for the first week), the soil mois-
ture is updated every day (once the FY3A-VIRR LST data 
are available) by minimizing the difference between the 
predicted LST and the FY3A-VIRR LST. This section will 
introduce the model operator and data assimilation algo-
rithm used in the dual-pass data assimilation scheme.  

1.1  Common land model 

The common land model (CoLM) is a state-of-the-art model 
developed by many groups and validated with extensive 
field data sites. The CoLM can combine many processes, 
i.e., physical, hydrological, and biological, to simulate land 
state variables (e.g., soil temperature and soil moisture) and 
diagnostic variables (e.g., surface radiation and surface 
fluxes) (Dai et al., 2003). The CoLM contains one vegeta-
tion layer, ten unevenly spaced vertical soil layers and up to 
five snow layers (the number of snow layers can be changed 
with the total snow depth). A two-big-leaf model was built 
in 2004 for leaf temperature, photosynthesis, and stomatal 
conductance and divides the vegetation canopy into sunlit 
and shaded leaves (Dai et al., 2004).  

In CoLM, the sensible and latent heat fluxes can be cal-
culated using the land-atmosphere energy balance equation. 
For a bare ground land surface, the equation is as follows: 

 ,n g g gG R H LE   , (1) 

where G is soil heat flux at the soil surface (W m2), Rn,g is 
the net radiation absorbed by the ground surface (W m2), 
and Hg and LEg are the sensible and latent heat fluxes at the 
soil surface, respectively (W m2). The soil heat transfer is 
assumed to obey the following equation: 
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where c is the volumetric heat capacity, T is the soil tem-
perature, t denotes time, F is the soil heat flux, and z is the 
vertical coordinate. For vegetated land surfaces, the leaf 
temperatures are determined by the energy balance equation 
for the sunlit and shaded fractions of the canopy, and the 
sunlit and shaded leaf temperatures can be calculated as 
follows: 
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where Cc is the canopy heat capacity (J m2 K1) and is as-
sumed to be negligible, Tcsun and Tcsha are the sunlit and 
shade leaf temperatures (K), respectively, t denotes time, 
Rn,csun and Rn,csha are the net radiation amounts absorbed by 

the sunlit and shaded canopies (W m2), respectively, Hcsun 
and Hcsha are the sensible heat fluxes from the sunlit and 
shaded canopies (W m2), respectively, and LEcsun and 
LEcsha are the latent heat fluxes from sunlit and shaded can-
opies (W m2), respectively. 

The total surface fluxes from the land surface to the at-
mosphere can be calculated as follows:  

 g csun cshaH H H H   , (5) 

 g csun cshaLE LE LE LE   , (6) 

where H and LE are the sensible and latent heat fluxes from 
the land surface to the atmosphere (W m2), respectively. 
The details of the ground, sunlit and shaded flux calcula-
tions can be found in Dai et al. (2003, 2004). 

The land surface temperature is a prognostic variable in 
CoLM and can be calculated using the following equation: 

  0.25

s uT F  , (7) 

where Ts is the simulated land surface temperature (K), Fu is 
the surface upward long-wave radiation emitted from soil 
and canopy (W m−2),  is the Stefan-Boltzmann constant 
(5.67×108 W m2 K4), and  is the broadband emissivity. 
This equation can be considered as the observational opera-
tor of the dual-pass data assimilation scheme.  

In CoLM, soil moisture is important for dividing the net 
radiation into the ground heat, sensible, and latent heat 
fluxes. A large soil moisture value will lead to a large latent 
heat flux and small sensible heat flux and surface tempera-
ture values (and vice versa). The equation for liquid soil 
water and ice can be expressed as (Dai et al., 2003): 
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where Wliq is the mass of the soil water (kg), t is time, q is 
the water flow within the soil (kg m2 s1), Et is evapotran-
spiration (kg m2 s1), and Mil is the mass rate of melting 
(positive) or freezing (negative) of soil ice. 

Ten unevenly vertical soil layers are set up in CoLM, and 
the depth of soil layer jth at the node depth is defined as 
zj=0.025×{exp[0.5(j0.5)1]}. 

The input data of CoLM include ancillary data and forc-
ing data. A variety of ancillary data is required for modeling 
and includes land cover type, soil and vegetation parameters. 
The Land Use and Land Cover (LULC) in CoLM can be 
based on the International Geosphere-Biosphere Programme 
(IGBP) or the United States Geological Survey (USGS) 
classification system. Shangguan et al. (2012) developed a 
conterminous China soil texture (i.e., sand, silt and clay 
content) dataset with 1 km×1 km resolution for land model-
ing use. The leaf area index (LAI) can characterize vegeta-
tion growth conditions and is important for surface flux 
estimates; the LAI was derived from the MODIS LAI 
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products and directly incorporated into CoLM in this study. 
The other vegetation parameters, such as surface roughness 
length, are optimized using the dual-pass data assimilation 
scheme. In this study, the forcing data were taken from a 
continuous series of meteorological data measured by au-
tomatic weather stations with a temporal resolution of a half 
hour. The data include wind speed, air temperature, relative 
humidity, air pressure, precipitation, incoming shortwave 
radiation, and incoming long-wave radiation. The model is 
run using the same time steps as the measured meteorologi-
cal data, and the field measurements are used for model 
state variable initialization, i.e., soil moisture and soil tem-
perature. The spatial scale of CoLM depends on the spatial 
scale of the forcing data and land surface parameters. In this 
study, the ground-measured meteorology data are used as 
the forcing data with a representative area larger than 1 km. 
The land surface parameters occur primarily at the 1 km 
spatial scale, and thus, we assume that the spatial scale of 
CoLM is approximately 1 km. 

1.2  Assimilation method 

In this study, the EnKF algorithm is employed as the data 
assimilation method. Due to easy implementation, the EnKF 
algorithm has been broadly applied in the construction of 
data assimilation schemes. The EnKF is based on ensemble 
generations in which the approximation of the predicted 
state error covariance matrix is calculated by spreading an 
ensemble of model states using the states from the previous 
time step. The key concept in the performance of the EnKF 
is the generation of the ensemble of model states or param-
eters and observations at each update time by introducing 
noise drawn from a distribution with a zero mean and co-
variance equal to the model states and observation error 
covariance matrix.  

Consider X=[w1, w2, …, w10]
T as the state vector of the 

data assimilation scheme, where w1, w2, and w10 denote the 
soil moisture of the first layer, second layer and tenth layer, 
respectively. The first time the algorithm is run, the first 
guest value X0 is used to create a series of state vector en-
semble members by adding random noises: 

 ,0 0i iX X   , 0~ (0, )i N B , (9) 

where Xi,0 is the state variable of the ith member at the be-
ginning time, and i is the background error vector that 
conforms to a Gaussian distribution with a zero mean and 
covariance matrix of B0.  

In the forecast step, the each soil moisture ensemble 
member is predicted according to:  

 , 1 , 1 1( , , )f f
i t i t t t iX M X       , ~ (0, )i N Q , (10) 

where ,
f

i tX , , 1
f

i tX   represent the forecasted state variables of 

the ith member at times t and t+1, the superscript “f” repre-

sents the forecasted state variables, M(·) is the model oper-
ator (CoLM in this study), t+1 and t+1 indicate forcing data 
and model parameters at time t+1, respectively, and i is the 
model error vector, which conforms to Gaussian distribution 
with a zero mean and covariance matrix Q (Q: The model 
error matrix). 

When FY3A-VIRR LST is available, the observation op-
erator will predict LST as given by the following equation: 

 ( , , )f f
si i iT H X v   , ~ (0, )iv N R , (11) 

where f
siT  is the model-predicted land surface temperature 

of the ith member, H(·) is the observation operator that re-
lates the model state variables to observations, and vi is the 
observation error that conforms to Gaussian distributions 
with a zero mean and covariance matrix R (R: The observa-
tion error). The state variable of each member is updated as 
follows:  
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where a
iX  represents the analyzed state variables of the ith 

member, K is the Kalman gain matrix, o
sT  is the FY3A- 

VIRR LST observations, Pf is the forecasted background 
covariance matrix, N is the number of ensembles; and 

i

fX  is 

the mean of the forecasted state vector ensemble members.  
As a type of quantitative global sensitivity analysis 

method, the Extended Fourier Amplitude Sensitivity Test 
(EFAST) (Saltelli and Bolado, 1999) is used to rank the 
model vegetation parameters and identify factors that could 
be considered optimized in CoLM. According to the sensi-
tivity test, the five most important vegetation parameters are 
the surface roughness length (z0m), quantum efficiency at 
25°C (effcon), maximum rate of carboxylation at 25°C 
(vmax25), conductance-photosynthesis slope parameter 
(gradm), and conductance-photosynthesis intercept (binter). 
The five most important parameters are selected and opti-
mized using EnKF algorithm in this study. Using the du-
al-pass assimilation technique, the EnKF updates the model 
states and parameters separately. The soil moisture and 
model parameters are updated separately using eqs. (12)– 
(16). In Pass 1, the state variables X in eq. (9) include the 
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selected vegetation parameters, and X includes the ten-layer 
model soil moisture in Pass 2.  

To apply the EnKF technique, generation of ensemble 
members of the state vector is necessary, and noise should 
be added to the forcing data, model parameters, and model 
state variables. Because the in-situ meteorology data are 
used for forcing data, they are not perturbed by addition of 
noise. In this study, the variable ensemble members can be 
obtained by adding a series of Gaussian-distributed noises 
to the model parameters of Pass 1 and the model soil mois-
ture of Pass 2. The sizes of the ten-layer soil moisture noises 
are 0.036, 0.033, 0.033, 0.034, 0.032, 0.030, 0.032, 0.024, 
0.024 and 0.024 m3 m3 (from the top to the bottom layer), 
according to Xu et al. (2011). The sizes of the model pa-
rameter noises are set to 10% of the range of the value.  

Because Pass 2 of the dual-pass data assimilation scheme 
updates the soil moisture when the FY3A-VIRR LST data 
are available, eqs. (12)–(16) can be used directly. For Pass 1, 
the analyzed model parameters are calculated when the 
FY3A-VIRR LST data are available but are not updated. At 
the end of the week, the calculated model parameter analy-
sis are averaged and updated as follows: 

 ,
1

1
( )

D
a a
i i t

kD
 



  , (17) 

where a
i  represents the averaged model parameter anal-

ysis of the ith member, ,
a
i t  is the model parameter analy-

sis of the ith member at the time t in one week, and D is the 
number of FY3A-VIRR LST observations in one week. The 
averaged model parameter analysis is transferred to Pass 2 
of the data assimilation scheme.  

2  Experimental data 

2.1  Site description 

Data from six sites located in three major nature zones 
(western arid and semi-arid area, eastern monsoon area, and 
Qinghai-Tibet alpine meadow) of People’s Republic of 
China (PRC) are used for the data assimilation experiments. 
The data assimilation experiments are conducted during the 

vegetation growth seasons to capture the partition of availa-
ble energy in the six sites with different climatological con-
ditions. The Daman site is a superstation of the Heihe Wa-
tershed Allied Telemetry Experimental Research (Hi-
WATER) (Li et al., 2013). The experimental time period for 
the Daman site is DOY 148–273 in 2012 and DOY 121–273 
in 2010 for the other five sites. The Daman is a cropland 
site covered with seed corn located in Gansu province, the 
Guantao is cropland site coved with corn and cotton located 
in Hebei province, the Arou is an alpine meadow site cov-
ered with dense grass located in Qinghai province, the BJ 
site is a grassland site covered with sparsely distributed 
short grass during the rainy season and is located in the Ti-
bet Plateau, the Miyun site is located in the northern moun-
tain area of the Beijing city and has a surface primarily 
covered with orchard and maize, and Jiyuan is a forest site 
located in the mountain area of Henan province. Table 1 
summarizes the surface conditions of the six experimental 
sites. A multi-scale surface flux observation system con-
sisting of an eddy covariance (EC) and a large aperture 
scintillometer (LAS) is set up at each site to acquire the 
surface fluxes at two spatial scales simultaneously. Auto-
matic weather station (AWS) is also equipped in the six flux 
observation sites, and the AWS can provide the necessary 
forcing data and auxiliary data model. The EC-measured 
sensible and latent heat fluxes and the LAS-measured sen-
sible heat flux are used to validate the dual-pass data assim-
ilation scheme. In this type of observation system, the 
source area of LAS system is generally larger than one 
FY3A-VIRR pixel (1 km resolution). The EC and AWS are 
located next to the center of the LAS optical path.  

All of the observed data from the AWS, EC, and LAS 
were collected in half-hour time steps. The processing 
method for these data can be found in Liu et al. (2011, 
2013). The LAS system consists of a transmitter and a re-
ceiver installed on a pair of towers approximately 500–5000 m 
apart that can measure the average value of sensible heat 
flux along the optical path of the instrument. Generally, the 
source area of the LAS measurements is generally larger 
than EC measurements, and covers more than one FY3A- 
VIRR pixel. Thus, source area of LAS measurements must 
be calculated using a footprint model. The LAS footprint is  

Table 1  Summary of the surface characteristics of the six experimental sites 

Site Latitude Longitude Location Nature zones Land cover Elevation (m) 

Daman 38.37°N 100.85°E Gansu Western arid and semi-arid Crop land 1560 

Guantao 36.52°N 115.13°E Hebei Eastern monsoon Crop land 30 

Arou 38.04°N 100.91°E Qinghai Qinghai-Tibet alpine Alpine meadow 3033 

BJ 31.37°N 91.89°E Tibet Qinghai-Tibet alpine Grass land 4520 

Miyun 40.63°N 117.32°E Beijing Eastern monsoon Orchard 350 

Jiyuan 35.03°N 112.47°E Henan Eastern monsoon Forest 400 
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calculated according to Liu et al. (2011, 2013):  

 d
1

2

( , , ) ( ) ( , , ) ,
x

LAS eff eff
x

f x y z W x f x x y y z x       (18) 

where W(x′) is the path-weighting function of the LAS; x1, 
x2 are the locations of the LAS transmitter and receiver, 
respectively; x′, y′ are the points along the optical length of 
the LAS; x, y are the coordinates upwind of each point (x′, 
y′); and zeff is the effective measurement height of the LAS. 
The monthly LAS footprints are used in this study and are 
determined by averaging each half-hour footprint when the 
sensible heat fluxes are larger than zero; footprint values 
from the time period of 22:00 to 6:00 are also excluded.  

2.2  FY3A-VIRR land surface temperature (LST) 

The land surface temperature (LST) can be retrieved from 
the visible and infrared radiometer (VIRR) sensor mounted 
on the FY3A satellite, and the products can be downloaded 
from the website at http://satellite.cma.gov.cn/PortalSite/ 
Ord/Satellite.aspx. The VIRR is a multi-channel instrument 
designed for comprehensive detection of the earth environ-
ment. The VIRR instrument contains 10 channels ranging 
from 0.58 to 12.5 m. The fourth (10.3–11.3 m) and fifth 
(11.5–12.5 m) channels are infrared channels with little 
water vapor absorption and have a nominal spatial resolu-
tion of 1 km×1 km at the nadir. With these two infrared 
channels, the land surface temperature is obtained based on 
a local split window method (Becker and Li, 1990) as fol-
lows: 

 Ts=A0+P(T4+T5)/2+M(T4T5)/2, (19) 

where Ts is the FY3A-VIRR LST (K), A0 is a constant, T4 
and T5 are the brightness temperatures of the fourth and fifth 
channels (K), respectively, and P and M are the functions of 
the land surface emissivity, which can be regressed from the 
simulated data. Yang et al. (2006) recalculated the parame-
ters in this algorithm based on the spectral response func-
tion of the FY3A-VIRR sensor. The FY3A-VIRR LST 
products can provide the LST and emissivity of each pixel, 
and the data are stored in a hierarchical data format (HDF), 
which is a sinusoidal projection with a spatial resolution of 
1 km (Yang and Dong, 2011).  

The LST derived from the FY3A-VIRR must be validated 
using in-situ measurements. The ground-measured surface 
temperatures can be calculated using the upward long- wave 
radiation at the land surfaces, the land surface emissivity, 
and the downward long-wave radiation according to thermal 
radiative transfer theory (Liang, 2004). 

   0.25
(1 )s u dT F F    , (20) 

where Ts is the land surface temperature (K), Fu is the sur-
face upward long-wave radiation (W m2), Fd is the surface 

downward long-wave radiation (W m2),  is the Stefan- 
Boltzmann constant (5.67×108 W m2 K4), and  is the 
broadband emissivity, which is 0.987 for grasslands and 
croplands and 0.993 for orchard and forest, according to 
Wang et al. (2008). 

The FY3A-VIRR LST data are compared with the 
ground measurements (Figure 2). As shown in Figure 2, the 
FY3A-VIRR LST and ground measurements follow the 
same trend; the correlation coefficients (R) are 0.90, 0.81, 
0.62, 0.71, 0.85 and 0.85 at the Daman, Guantao, Arou, BJ, 
Miyun and Jiyuan sites, respectively. The FY3A-VIRR LST 
data are larger than the field measurements at the Daman 
and Arou sites and smaller at the other four sites. The root 
mean square error (RMSE) values between the FY3A-VIRR 
LST data and the field measurements are 2.7, 3.5, 3.8, 5.0, 
3.7 and 3.0 K at the Daman, Guantao, Arou, BJ, Miyun and 
Jiyuan sites, respectively, and are used as the observational 
errors in the dual-pass data assimilation scheme. The devia-
tions between the FY3A-VIRR LST data and the ground 
measurements are determined by many factors. The terrain 
effect can affect the accuracy of the FY3A-VIRR LST re-
trievals. The mismatch of the spatial and temporal scales 
between the FY3A-VIRR and field-measured LST can also 
cause these biases. Remote sensing data such as the FY3A- 
VIRR LST are instantaneous values, whereas the ground 
measurement is a mean value over approximately 30 min. 
The spatial resolution of the FY3A-VIRR is approximately 
1 km×1 km, whereas the footprint of the ground measure-
ments is approximately dozens of square meters as deter-
mined by mounting level of the radiometer.  

3  Results and discussions 

In this section, the FY3A-VIRR LSTs are assimilated into 
CoLM with the developed dual-pass data assimilation scheme, 
and the results are compared with the multi-scale surface 
flux observations at the six experimental sites. The data 
assimilation scheme is conducted during the vegetation 
growth season. The statistics of the model biases (BIAS= 
model predictions–observations), the root mean square error 
(RMSE) and the correlation coefficients (R) are selected to 
assess the performance of the data assimilation scheme. In 
Section 3.1, the results are validated using the EC-derived 
sensible and latent heat fluxes. In Section 3.2, the results are 
compared with the LAS-derived sensible heat flux. In Sec-
tion 3.3, the retrieved soil moisture and model parameters 
are shown, and the error sources in surface flux predictions 
are analyzed.  

3.1  Comparisons of the simulation and assimilation 
results with EC data  

In this section, the ground-measured land surface tempera-
ture and the EC-derived sensible and latent heat fluxes are  
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Figure 2  Comparison between the FY3A-VIRR LST data and the ground-measured surface temperatures (OBS) at the six experimental sites.  

used to validate the results, which are shown in Figures 3, 4 
and Table 2.  

Generally, the diurnal variation trends of the land surface 
temperature and surface flux can be predicted correctly us-
ing the CoLM (Figure 3). However, the land surface tem-
peratures and the sensible heat flux are overestimated and 
the latent heat flux is underestimated with this model. The 
obvious errors in the surface temperature and surface flux 
modeling are corrected with the assimilation of the FY3A- 
VIRR LST data. The curves portrayed by the dual-pass data 
assimilation scheme are generally closer to the EC meas-
urements than the model predictions. From Figure 3, the 
model-simulated latent heat fluxes reach their peak rela-
tively early (at approximately 10:00 a.m.) and are at times 
nearly zero during the daytime, especially in the afternoon 
at the BJ site. With the assimilation of the FY3A-VIRR 
LST data, the diurnal variations of the latent heat flux agree 
well with observations. From eqs. (5)–(6), the surface fluxes 
can be produced by the vegetation canopy and ground. Us-
ing evapotranspiration as an example, the errors in the tran-
spiration from the canopy and the errors in the evaporation 
from the ground can be caused by the vegetation parameters 
and soil moisture. In this study, the MODIS LAI products 
are incorporated directly into the model, and the vegetation 
parameters are optimized at the weekly temporal scale with 
Pass 1 of the dual-pass data assimilation scheme. At the 
daily temporal scale, the soil moisture is optimized with 
Pass 2 of the dual-pass data assimilation scheme. With the 

optimized vegetation parameters and soil moisture, the 
CoLM can predict the latent heat flux more accurately. 

The daily averaged evaporation fraction (EF, ratio be-
tween latent heat flux and available energy) can be used to 
describe the splitting of available energy into sensible and 
latent heat fluxes. In CoLM, the EF is important for energy 
balance and describes the magnitude of available energy for 
evapotranspiration. Thus, the simulation and assimilation 
results are also assessed with the EC-derived EF. In this 
study, the daily averaged EF is calculated using EF=latent 
heat flux/(latent heat flux+sensible heat flux). Figure 4 
shows comparisons of the simulation and assimilation re-
sults with the EC-derived EF at the six experimental sites. 
From Figure 4, the CoLM usually underestimates the EF, 
which means that the model splits relatively less available 
energy for evapotranspiration. Precipitation data are also 
shown in Figure 4; the model-simulated EF is increased 
quickly after precipitation occurs, which indicates that soil 
moisture is important for predictions of surface fluxes. 
However, the EF decreases after a short period of precipita-
tion, and the EF is increased and is closer to the observa-
tions with the assimilation of FY3A-VIRR LST data.  

Table 2 summarizes the BIAS, RMSE and R-values of 
the model simulation and assimilation results compared 
with the EC-derived surface fluxes at the six sites. Accord-
ing to this table, the developed dual-pass data assimilation 
scheme can improve the predictions of surface flux and 
surface temperature. For the sensible and latent heat fluxes,  
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Figure 3  Comparisons of EC-derived sensible and latent heat fluxes with estimates from simulation and assimilation at the Daman, Guantao and Miyun sites.  
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Figure 4  Comparisons of the EC-derived evaporation fraction (EF) with estimates from simulation and assimilation at the six experimental sites.  
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the average BIAS values of the six sites change from 28.7 to 
5.3 W m2 and from 16.9 to 16.1 W m2; the average 
RMSE values drop from 71.7 to 46.8 W m2 and from 93.7 
to 70.8 W m2, and the RMSE values drop by 34.7% and 
24.4%, respectively. The correlations between the model 
and observations are increased (the average R values in-
crease from 0.75 to 0.78 and from 0.66 to 0.82). For the 
evaporation fraction (EF), the average BIAS values of the 
assimilation EF results drop from 0.19 to 0.04, the average 
RMSE values drop from 0.31 to 0.15, and the average 
R-values increase from 0.43 to 0.73, respectively. All of the 
statistics convey the message that the dual-pass data assim-
ilation scheme reduces the model uncertainties and im-
proves the prediction abilities of the model.  

3.2  Comparisons of the simulation and assimilation 
results with the LAS data 

Depending on the spatial representativeness of the ground- 
measured meteorology data and surface parameters, the 
spatial scale of the CoLM is approximately 1 kilometer, 
whereas the representativeness of EC is usually within 1 

kilometer. The different spatial scales of these categories 
may cause problems in the validation. The LAS instrument 
can measure the sensible heat flux at a larger scale than the 
EC system, and the LAS-measured sensible heat flux is 
compared with the dual-pass data assimilation results in this 
section.  

To demonstrate the accuracy of the LAS data, the sensi-
ble heat flux derived from the LAS system is compared with 
data from the EC system (Figure 5). The LAS and EC sen-
sible heat flux values larger than 50 W m2 are used for this 
comparison. From Figure 5, the sensible heat flux from the 
LAS system shows the same trend as the EC system, and 
the sensible heat flux from the LAS is slightly larger than 
that from the EC. The correlations between them are 0.79, 
0.74, 0.87, 0.78, 0.44, and 0.74 at the Daman, Arou, BJ, 
Guantao, Miyun and Jiyuan sites, respectively. The differ-
ences between the sensible heat fluxes measured by the EC 
and LAS system are primarily caused by the energy imbal-
ance of the EC, the heterogeneity of the underlying surfaces, 
and the differences between the source areas of the EC and 
LAS measurements (Liu et al., 2011). The Miyun site is 
located in a mountainous area with complex land surface  

Table 2  BIAS, RMSE and R-values of the simulation and assimilation results compared with the half-hourly EC-derived sensible and latent heat fluxesa) 

Site Statistics 
H (W m2)  LE (W m2)  EF 

Sim Ass  Sim Ass  Sim Ass 

Daman BIAS 42.7 16.8 44.6 4.7 0.32 0.12 

 RMSE 90.9 60.8 112.2 56.6 0.39 0.19 

 R 0.60 0.59 0.76 0.93 0.58 0.88 

Guantao 

BIAS 17.6 2.3 9.9 19.4 0.17 0.04 

RMSE 52.3 30.4 73.6 56.5 0.31 0.15 

R 0.71 0.81 0.79 0.91 0.36 0.56 

Arou 

BIAS 36.3 10.3 13.7 26.0 0.21 0.02 

RMSE 77.1 34.2 87.3 60.8 0.31 0.09 

R 0.76 0.87 0.76 0.93 0.04 0.72 

BJ 

BIAS 38.5 1.6 12.3 29.6 0.22 0.09 

RMSE 78.5 44.2 95.8 76.0 0.28 0.16 

R 0.88 0.87 0.50 0.78 0.54 0.72 

Miyun 

BIAS 19.6 0.8 8.3 16.5 0.16 0.03 

RMSE 56.2 43.3 75.3 68.4 0.25 0.11 

R 0.70 0.68 0.77 0.86 0.46 0.76 

Jiyuan BIAS 17.2 7.8 12.8 0.5 0.16 0.06 

 RMSE 75.2 67.9 117.9 106.2 0.32 0.21 

 R 0.84 0.85 0.39 0.49 0.59 0.76 

Average 

BIAS 28.7 5.3 16.9 16.1 0.21 0.01 

RMSE 71.7 46.8 93.7 70.8 0.31 0.15 

R 0.75 0.78 0.66 0.82 0.43 0.73 

a) In this work, BIAS, RMSE and R indicate the bias, root mean square error and correlation between the model results and observations, respectively; H, 
LE, and EF are the sensible and latent heat flux (W m2) and evapotranspiration fraction, respectively; Sim denotes model simulation results; and Ass is the 
data assimilation results with the dual-pass data assimilation scheme.  
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Figure 5  Comparisons of sensible heat flux derived from the LAS (HLAS) and EC (HEC) when HLAS and HEC are greater than 50 W m2 at the six experi-
mental sites.  

characteristics that may lead to large differences between 
the LAS and EC-derived sensible heat fluxes.  

Because the source area of the LAS measurements is 
larger than one FY3A-VIRR pixel, the weight of each cov-
ered pixel should be determined for the comparison. The 
source areas are calculated using a footprint model (eq. (18)) 
and are overlaid with the FY3A-VIRR pixel at the experi-
ment sites shown in Figure 6. The source area of 50% con-
tribution to the measured fluxes is used for Miyun site (Mi-
yun site is located in a valley of mount areas), and 80% 
contribution to the measured fluxes is used for the other five 
sites. The figure shows that the LAS source area did not 

show obvious variation and extended from the transmitter to 
the receiver point with main contributing source areas with 
a width of approximately half a pixel and a length of 2 to 3 
pixels. The averaged sensible heat flux can be determined as 
in (Jia et al., 2012): 

  


 average
1

n

i i
i

H w H , (21) 

where Haverage represents the model results with the same  
spatial representativeness as the LAS observation, wi is the 
relative weight of the LAS footprint in each pixel, Hi is the 
model result of each remote sensing pixel, and n is the  
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Figure 6  The monthly source areas of the LAS measurements overlaid with the FY3A-VIRR pixels at the six experimental sites: (a) Daman site; (b) 
Guantao site; (c) Arou site; (d) BJ site; (e) Miyun site; (f) Jiyuan site.  
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number of pixels within the source area.  
The comparison results at the six experimental sites are 

shown in Figure 7. From this figure, the sensible heat flux 
with the assimilation of the FY3A-VIRR LST is closer to 
the LAS observations than the model simulation, and the 
scatter with the assimilation of the FY3A-VIRR LST is  

closer to the 1:1 line (with a smaller BIAS). The larger 
R-values indicate that the assimilation results show a better 
correlation with the LAS measurements than the model 
simulation. The averaged RMSE for the six sites values 
drop from 110.3 to 76.3 W m2 (the RMSE values drop by 
30.8%). At the Miyun site, the sensible heat flux from the  

 
Figure 7  Comparisons of the LAS-derived sensible heat flux with estimates from simulation and assimilation when HLAS>50 W m2 at the six experiment sites. 
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LAS exhibits a large difference with data from the EC (Fig-
ure 5), and the R-value of the data assimilation result in-
creases from 0.30 to 0.48 with the LAS validation, whereas 
the BIAS value changes from 17.3 to 79.5 W m2 and the 
RMSE value increases from 84.8 to 98.4 W m2.  

3.3  Error sources in surface flux predictions 

Because soil moisture plays an important role in the terres-
trial water cycle, the vegetation parameters play a signifi-
cant role in water and energy movement among the land 
surface, canopy and atmosphere. The soil moisture and veg-
etation parameters are selected and optimized with the du-
al-pass data assimilation scheme to improve the predictions 
of surface flux. This section first presents the retrieved soil 
moisture and vegetation parameters from the dual-pass data 
assimilation scheme. Next, the error sources in the surface 
flux predictions are investigated and analyzed. 

Figure 8 shows the soil moisture retrievals at depths of 
0.05, 0.1, 0.2, 0.4, 0.6 and 1.0 m at the Miyun site (Orchard) 
from day 121 to 273 in the year 2010. Generally, the soil 
moisture estimates at certain soil depths after the data as-
similation show better agreement with their corresponding 
in situ observations than the model simulation without the 
assimilation. At other depths, the assimilation may degrade 
the soil moisture estimates. As shown in Figure 8, at depths 
of 0.05, 0.1, 0.2 and 0.6 m, the assimilation results are clos-
er to the observations than the model predictions during this 
time period, and the RMSE values of the soil moisture re-
trievals decrease through the assimilation of the FY3A- 
VIRR LST data. At depths of 0.4 and 1.0 m, the data assim-
ilation scheme degrades the soil moisture estimates. To ob-
tain accurate surface flux predictions, the Pass 2 of the 
scheme may sacrifice the model soil moisture prediction 
accuracies through minimizing the difference between sim-
ulated and observed land surface temperature. The soil 
moisture data assimilation results at the other sites show 
performance similar to that of the Miyun site; thus, the re-
sults are not shown. 

Table 3 summarizes the averaged values of the land sur-

face temperature, sensible and latent heat fluxes, and soil 
moisture for the model simulation and assimilation with 
Pass 2 (optimization of soil moisture). This table shows the 
relationships among soil moisture, land surface temperature, 
and surface fluxes. According to this table, with increased 
soil moisture, the latent heat flux increased accordingly, and 
the land surface temperature and sensible heat flux de-
creased. For the averaged values of the six sites, the soil 
moisture increased from 0.17 to 0.24 m3 m3 (increased 
38%), the land surface temperature decreased from 291.9 to 
290.9 K, the sensible heat flux decreased from 46.2 to 28.5 
W m2 (decreased 38%), and latent heat flux increased from 
69.6 to 94.5 W m2 (increased 36%).  

Figure 9 shows the seasonal variations of the five re-
trieved vegetation parameters at the Miyun site (Orchard) 
from day 121 to 273 of the year 2010. From Figure 9, the 
parameters are retrieved at the weekly temporal scales with 
the dual-pass data assimilation scheme, which indicates that 
the vegetation parameters are updated once per week. With 
the assimilation of the FY3A-VIRR LST data, the parame-
ter uncertainties are within a relatively stable range (the 
error bars of Figure 9). The vegetation parameters tend to 
show stable but not constant values as the vegetation pa-
rameters change with the seasonal variations of the vegeta-
tion conditions. The surface roughness length (z0m), max-
imum rate of carboxylation at 25°C (vmax25), conductance- 
photosynthesis slope parameter (gradm) and conductance- 
photosynthesis intercept (binter) increase to high values, 
and the quantum efficiency at 25°C (effcon) does not change 
significantly compared with the initial value, which means 
that this parameter agreed well with the real condition.  

The errors in the surface flux predictions are partly model 
biases (Figures 3–4), and the dual-pass data assimilation can 
reduce the model biases significantly (the EF decreases 
from 0.21 to 0.01 in Table 3). The evaporation fraction 
(EF) BIAS between the predicted and EC observations are 
shown in Figure 10, which presents the abilities of Pass 1 
and Pass 2 of the dual-pass data assimilation scheme to re-
duce the biases at the six sites. Generally, the dual-pass data 
assimilation scheme reduces the model biases and performs  

Table 3  Averaged values of simulation and assimilation resultsa) 

 Ts (K)  H (W m2)  LE (W m2)  SM (m3 m3) 

Site Sim Pass 2  Sim Pass 2  Sim Pass 2  Sim Pass 2 

Daman 292.7 290.4 51.2 36.5 69.7 101.8 0.31 0.36 

Guantao 297.7 296.5 34.1 15.2 70.1 97.5 0.21 0.26 

Arou 285.8 285.2 55.7 38.9 77.5 95.7 0.11 0.24 

BJ 284.9 283.6 63.6 42.9 62.4 93.8 0.06 0.07 

Miyun 293.9 294.3 28.4 26.5 80.4 82.5 0.13 0.21 

Jiyuan 296.5 295.8 43.9 10.7 57.7 95.7 0.20 0.27 

Average 291.9 290.9 46.2 28. 5 69.6 94.5 0.17 0.24 

a) In this work, Ts is the land surface temperature (K); H and LE are the sensible and latent heat fluxes (W m2), respectively; SM is the soil moisture (m3 m3), 
Sim is the model simulation results; and Pass 2 is the data assimilation results with Pass 2 (optimize soil moisture) of the dual-pass data assimilation scheme. 
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Figure 8  Comparisons of the soil moisture measurements with estimates from the simulation and assimilation at the Miyun site from day 121 to 273 of 
year 2010. 
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Figure 9  Model parameter retrievals at the Miyun site from day 121 to 273 of the year 2010. error bars indicate the uncertainty of the retrieved parameter. 

better than the use of Pass 1 and Pass 2 independently. Both 
Pass 1 (optimization of the vegetation parameter) and Pass 2 
of the scheme (optimization of the soil moisture) play im-
portant roles in the surface flux predictions. Pass 2 performs 
better than Pass 1, which means that soil moisture plays an 
important role in predictions of surface flux. Because Pass 1 
optimizes the vegetation parameters for the each week, it is 
better able to cope with the high LAI values. Pass 1 per-
forms better at a densely vegetated site (e.g., the Daman site) 
than at sparsely vegetated sites (e.g., the BJ site). With Pass 
1 and Pass 2, the dual-pass data assimilation scheme can 
reduce most of the surface flux prediction biases and pro-
duce more stable results. 

4  Conclusions 

In this study, a dual-pass data assimilation scheme was con-
structed to estimate the surface fluxes via the independent 
optimization of the soil moisture and vegetation parameters. 

Pass 1 of the data assimilation scheme optimized the vege-
tation parameters at the weekly temporal scale, and Pass 2 
optimized the soil moisture at the daily temporal scale. The 
land surface temperature data from the new generation 
Chinese meteorology satellite FY3A-VIRR were assimilat-
ed into CoLM for the first time based on the EnKF algo-
rithm. The results were validated using the multi-scale sur-
face flux observations (derived from the EC and LAS) at six 
sites. Ultimately, the soil moisture and vegetation parame-
ters were retrieved, and the error sources in surface flux 
predictions were analyzed. 

According to comparisons with the EC-derived sensible 
and latent heat flux, the assimilation curves matched well 
with observations (Figure 3). The dual-pass data assimila-
tion scheme reduced the model uncertainties and improved 
the prediction abilities of the model. The average BIAS 
values of the six sites changed from 28.7 to 5.3 W m2 and 
from 16.9 to 16.1 W m2; the average RMSE values dropped 
from 71.7 to 46.8 W m2 and from 93.7 to 70.8 W m2; and 
the average R-values increased from 0.75 to 0.78 and from  
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Figure 10  Evaporation fraction (EF) biases (BIAS) at the experimental sites.  

0.66 to 0.82, respectively. The evaporation fraction (EF) 
was also used to assess the performance of the dual-pass 
data assimilation scheme (Figure 4). The EF simulations 
quickly decreased, and the values were lower than the ob-
servations after the precipitation occurred. With the assimi-
lation of the FY3A-VIRR LST, the scheme improved the 
underestimation of the EF estimates and improved the dis-
tribution of available energy into sensible and latent heat 
fluxes. The average BIAS values of the assimilation EF 
results dropped from 0.21 to 0.01, the average RMSE 
values dropped from 0.31 to 0.15, and the average R-values 
increased from 0.43 to 0.73. 

Furthermore, the sensible heat flux measured by the LAS 
with larger spatial representativeness was used to validate 
the results. The source areas of the LAS measurements were 
calculated using a footprint model and overlaid with a 
FY3A-VIRR pixel, which are larger than one FY3A-VIRR 
pixel (Figure 6). The sensible heat fluxes calculated from 
each covered FY3A-VIRR pixel were averaged and com-
pared with the LAS-derived sensible heat flux. The com-
parisons showed that the assimilation results match well 
against the LAS measurements, and the correlations be-
tween the assimilation results and LAS measurements were 
higher than that of the model simulations at the Daman, 
Guantao, Arou, BJ, and Jiyuan sites (Figure 7). 

In addition to the estimates of surface flux, the dual-pass 
data assimilation scheme also retrieved the model soil 
moisture and vegetation parameters. The soil moisture esti-
mates at certain soil depths after the data assimilation show 
better agreement with their corresponding in-situ observa-
tions than the model simulation without the assimilation. At 
other depths, the assimilation may degrade the soil moisture 
estimates (Figure 8). Furthermore, the five vegetation pa-
rameters, i.e., surface roughness length (z0m), quantum 
efficiency at 25°C (effcon), maximum rate of carboxylation 
at 25°C (vmax25), conductance-photosynthesis slope param-
eter (gradm), and conductance-photosynthesis intercept (binter) 
were retrieved at the weekly temporal scales (Figure 9).  

The aim of this study was to eliminate or reduce the errors 
between the model simulation and observation. Because the 
land surface temperature and surface fluxes are prognostic 
variables in CoLM, the simulation is quite complicated and 
is affected by many factors. From Figure 4, the EF simula-
tions were increased relative to the observations after the 
precipitation occurred, which means that soil moisture is an 
important variable in CoLM for surface flux predictions. 
Furthermore, the accuracy of the vegetation parameters is 
vital for canopy transpiration. Thus, the dual- pass data as-
similation is developed. Pass 1 optimizes the vegetation 
parameters at the weekly temporal scale, which is similar to 
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a parameter calibration procedure, and Pass 2 optimizes the 
soil moisture at the daily temporal scale. Both passes focus 
on reducing the errors of the model on the weekly and daily 
temporal scales and correcting the model predictions with 
the assimilation of the FY3A-VIRR LST data. The model 
errors in the surface flux predictions were investigated in 
Section 3.3 of this study (Figure 10). Figure 10 showed that 
the model biases in the surface flux predictions were caused 
by both the soil moisture and vegetation parameters. With 
Pass 1 and Pass 2, the dual-pass data assimilation scheme is 
able to reduce most of the surface flux prediction biases 
(BIAS).  

Because of the short memory of the land surface temper-
ature, it is difficult to assimilate the land surface tempera-
tures. Directly assimilating land surface temperature to op-
timize soil moisture may cause model simulations that are 
more unstable (Figure 8). In this study, the predictions of 
the surface flux and land surface temperature can be im-
proved by updating the soil moisture, but the updated soil 
moisture may not fit the observations well at all conditions 
(Figure 8). Thus, converting the land surface temperature 
into soil moisture or evapotranspiration (ET) using diagnos-
tic models first and subsequently assimilating the converted 
variables into the model is one approach to avoid the model 
instability. Future studies are planned to assimilate the land- 
surface-temperature-converted variables (soil moisture or 
ET) into the land surface model and apply the data assimila-
tion scheme over regions (e.g., Heihe River Basin, Haihe 
River Basin) located in China. 
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