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Land surface process modeling of high and cold area with vegetation cover has not yielded satisfactory results in previous ap-

plications. In this study, land surface energy budget is simulated using a land surface model for the A’rou meadow in the up-

per-reach area of the Heihe River Basin in the eastern Tibetan Plateau. The model performance is evaluated using the in-situ 

observations and remotely sensed data. Sensible and soil heat fluxes are overestimated while latent heat flux is underestimated 

when the default parameter setting is used. By analyzing physical and physiological processes and the sensitivities of key pa-

rameters, the inappropriate default setting of optimum growth and inhibition temperatures is identified as an important reason 

for the bias. The average daytime temperature during the period of fastest vegetation growth (June and July) is adopted as the 

optimum growth temperature, and the inhibition temperatures were adjusted using the same increment as the optimum temper-

ature based on the temperature acclimation. These adjustments significantly reduced the biases in sensible, latent, and soil heat 

fluxes. 
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Land surface process is an important part of the mass and 

energy cycle in the earth system. Dozens of land surface 

models have been developed in the past 30 years. However, 

these models do not yield satisfactory results for high-  

altitude and extremely cold areas, such as the Tibetan Plat-

eau (Yang et al., 2009).  

The Tibetan Plateau is a critical region in the land- at-

mosphere interaction research as it is an important factor in 

the formation of eastern Asian summer monsoon (Song et 

al., 2010; Yanai et al., 1992). It is often addressed as the 

“Third Pole” of the world (Qiu, 2008) because its climatic 

features and geographical significance are similar to those 

of the Arctic and Antarctic. The Tibetan Plateau has some 

unique features as a result of its high altitude, extreme en-

vironment, and climate. Yang et al. (2009) summarized 

three main characteristics of the Tibetan Plateau: i) strong 

diurnal change in the surface energy budget owing to strong 

solar heating, ii) contrast between the dry western region 

and the wet eastern region, and iii) significant seasonal var-

iation in the surface energy budget in the central and eastern 

regions. 

Owing to the spatial disparity of the climate, the western 

region is characterized by alpine deserts, whereas the east-

ern region is covered with alpine meadows and grasslands, 

e.g., the meadows in upper-reach area of the Heihe River 
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Basin. In the western Tibetan Plateau, radiation and energy 

balances are strongly influenced by snow cover, permafrost, 

and sporadic precipitation. Conversely, in the eastern and 

central Tibetan Plateau, the precipitation is relatively plenty 

in summer due to the monsoon. Therefore, the land surface 

processes in the warm season are different from those in the 

cold season. Soil freezing and thawing strongly affects en-

ergy exchange in spring and autumn, whereas in summer, 

vegetation plays an important role in surface water and en-

ergy balances.  

To better understand land surface processes in extremely 

high-cold regions, many land-atmospheric field experiments 

have been conducted, e.g., the Global Energy and Water cy-

cle Experiment-Asian Monsoon Experiment-Tibet (GAME/ 

Tibet) (Koike et al., 1999), the Tibetan Plateau Experiment 

of Atmospheric Sciences (TIPEX) (Zhang et al., 2000), the 

CEOP Asia-Australia Monsoon Project in Tibet (CAMP/ 

Tibet) (Koike, 2004), the New Integrated Observational 

System over the Tibetan Plateau (NIOST) (Xu et al., 2008), 

the Tibetan Observation and Research Platform (TORP) 

(Ma et al., 2008), the Watershed Allied Telemetry Experi-

mental Research (WATER) (Li et al., 2009), and the ongo-

ing Heihe Watershed Allied Telemetry Experimental Re-

search (HiWATER) (Li et al., 2013). 

These experiments and projects have extended our un-

derstanding of the characteristics of the land surface process 

at high-altitude regions. A number of land surface modeling 

studies have been conducted in the past 20 years based on 

the observed data from these experiments. Some studies 

have focused on the impact of snow cover and soil freez-

ing-thawing process on land surface radiation, energy, and 

water balance (Hu et al., 2006; Li and Sun, 2008; Li et al., 

2010; Takayabu et al., 2001; Yasunari et al., 2011; Zhou 

and Huang, 2012), and some researchers have emphasized 

the impact of energy exchange between different soil layers 

on the entire energy transfer process (Gao et al., 2007; van 

der Velde et al., 2009; Yang et al., 2005). Based on experi-

mental data, a scheme for parameterizing the thermal 

roughness length has been developed (Yang et al., 2002) 

and applied in a land surface model and this scheme signif-

icantly reduces biases in simulated surface energy budget 

and surface temperature of the western Tibetan Plateau 

(Chen et al., 2010, 2011). Several studies also discussed the 

role of vegetation in land surface energy partition for alpine 

meadows (Gao et al., 2002; Gao et al., 2004; Hong and Kim, 

2010; Yang et al., 2004). Some of these studies show that 

the energy balance for the central and eastern Tibetan Plat-

eau during the wet period could not be simulated well by 

land surface models. For instance, Gao et al. (2002) adopted 

the Simple Biosphere model 2 (SiB2) to simulate surface 

energy budget using data from an automatic weather station, 

field survey, and remote sensors at the Naqu BJ site in the 

central Tibetan Plateau. By comparing their results with 

eddy covariance observations during the vegetation growth 

season, they found that the SiB2 model overestimated the 

sensible heat. However, explanations of the bias in model 

simulations for the eastern and central Tibetan Plateau re-

main lacking.  

In this study, a land surface modeling experiment is 

conducted for A’rou alpine meadow in the upper-reach area 

of the Heihe River Basin in the eastern Tibetan Plateau us-

ing a new version of SiB2 model, to further address the im-

pact of the unique climate and vegetation features of alpine 

meadows. The land surface energy balance is evaluated and 

erroneous vegetation parameters are identified through en-

ergy exchange process analysis and parameter sensitivity 

test. A new vegetation parameter setting scheme is imple-

mented subsequently improving the model performance. 

1  Data and Methods 

1.1  Site and data 

This study is conducted at the A’rou observation site 

(38°02′39.8″N, 100°27′52.9″E), an experimental site in 

WATER (Li et al., 2009) and HiWATER program (Li et al., 

2013), in Qilian County, Qinghai Province. The site is lo-

cated in a valley with a maximum width of 3 km upstream 

of the Heihe River Basin to the northeast of the Tibetan 

Plateau. It is a typical alpine meadow site with relatively 

homogeneous coverage. The terrain around the observation 

site is relatively flat, with a gentle slope from the southeast 

to the northwest, which makes it ideal for land surface 

modeling and validation. The A’rou meadow is an ex-

tremely high-cold region, located at an elevation of 3030 m. 

The annual precipitation and mean air temperature are 405 

mm and 1.0°C, respectively (observation of Qilian station, 

1957–2008)
1)

. Figure 1 shows the seasonal variations and 

the inter-annual changes in precipitation and mean air tem-

perature (K) for the A’rou meadow. The soil is silt loam, 

and it starts to freeze in October every year and may not 

completely thaw until May the next year. However, during 

summer, grass grows quickly to a maximum height of 

proximately 20–30 cm, which changes the land water and 

energy partition pattern.  

The observation instruments at A’rou site include an au-

tomatic weather station (AWS), an eddy covariance (EC) 

system, and a large aperture scintillometer (LAS). The 

AWS is installed at the middle of the observation field for 

recording wind direction, wind velocity, air temperature, air 

pressure, air humidity, precipitation, radiation, soil heat flux, 

and soil temperature and moisture. The EC system is in-

stalled near the AWS to record high-frequency fluctuation 

of wind, temperature, and humidity, which are used to cal-

culate sensible and latent heat fluxes. The transmitter and 

receiver of LAS are installed at the north side and south side  

                           
1) Data obtained from China Meteorological Data Sharing Service System (http://cdc.cma.gov.cn/) 
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of the valley, respectively, to observe the sensible heat flux. 

Detailed information of these instruments is provided in 

Table 1. For a more detailed description of the site and the 

data processing process, refer to Liu et al. (2011) and Li et 

al. (2009). 

All data used in this study are collected from 11 June to 

30 September 2008, averaged over hourly intervals. The 

winter season is not considered to avoid the effect of the 

freeze-thaw process, which is not well represented in the 

standard version of SiB2 (Li and Koike, 2003; Yang et al., 

2009). Short wave radiation (downwards), long wave radia-

tion (downwards), wind velocity, air temperature, air hu-

midity, and precipitation recorded by the AWS are used as 

forcing data. Net radiation observed by the AWS, sensible 

and latent heat fluxes observed by EC system, and soil heat 

flux are used as validation data. By considering the ordinary 

linear regression slope of turbulent energy fluxes (H+LE) 

versus the available energy (Rn-G0) as the energy balance 

closure ratio (Wilson et al., 2002), the ratios for both the 

daytime and the entire day at the A’rou site during June to 

September 2008 are about 87%, which is close to the value 

calculated by Liu et al. (Liu et al., 2011). The accuracy of 

the soil heat flux plate observations is affected by the buried 

depth and the sensitivity of the plates, and hence, in this 

study, we calculate the soil heat flux from the soil tempera-

ture and moisture observations using the thermal diffusion 

equation-correction (TDEC) method (Yang and Wang, 2008). 

1.2  Model and parameter setting 

The SiB2 model was developed by Sellers et al. (1996b) 

based on the SiB model. It incorporates a canopy photosyn-

thesis conductance sub-model to simulate a more realistic 

vegetation physiological process. 

It simplifies the two-story vegetation used in the first 

version of SiB to a single layer to fully use the remote 

sensing data. It also improves the snow cover and hydro-

logical process simulation. As one of the most influential 

land surface models, the SiB2 model has been widely im-

plemented in regional and global land surface modeling 

(Gao et al., 2004; Hanan et al., 2005; Prihodko et al., 2008; 

Sen et al., 2000; Yang et al., 2009). 

For this study, we adopted all modules of the SiB2 model 

except for the calculation of aerodynamic parameters used 

in the canopy transfer resistances parameterization. In the 

SiB2 model, these aerodynamic parameters are calculated 

using a K-theory based model, which is inconsistent with 

the classic mixing-length theory when aerodynamic rough-

ness length (z0) approaches the bare-soil value (Yang et al., 

2009). In the present study, we incorporate a mixing-length 

theory based canopy model (Watanabe and Kondo, 1990) to 

calculate the aerodynamic parameters. 

There are three main types of parameters in the SiB2 

model, namely, vegetation, soil, and topographical parame-

ters. Topographical and vegetation morphologic parameters  

 
 

 

Figure 1  Seasonal variations and inter-annual changes in precipitation and air temperature in the A’rou meadow. Left: Daily air temperature and precipita-

tion in 2008; Right: Annual air temperature and precipitation from 1957 to 2008. The curves represent temperatures and the bars represent precipitation. 

Table 1  Description of the instruments incorporated in the AWS, EC system, and LAS at A’rou site 

Instruments Variable Sensors Height/Depth(m) 

AWS Air temperature/humidity HMP45C, Vaisala 2.07, 10.04 

Wind velocity 014A, Met One 2.03, 10.16 

Wind direction 034B, Met One 10.16 

Air pressure CS105, Vaisala / 

Precipitation TE525, Campbell / 

Radiation PSP&PIR, Eppley 1.50 

Soil heat flux HFT3, Campbell 0.05, 0.15 

Soil temperature 107, Campbell 0.1, 0.2, 0.4, 0.8, 1.2, 1.6 

Soil moisture CS616, Campbell 0.1, 0.2, 0.4, 0.8, 1.2, 1.6 

EC Sensible and latent heat flux CSAT3, Campbell and Li7500, Li-cor 3.15 

LAS Sensible heat flux BLS450, Scintec 9.5 
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along with soil depths and porosities are set based on prior 

knowledge and field survey data. LAI (leaf area index) and 

vegetation cover are derived from monthly averaged 

MODIS (moderate-resolution imaging spectroradiometer) 

products. Other parameters are set to default values ob-

tained from Sellers et al. (1996a). Table 2 lists the parame-

ter values used in this study. The vegetation height parame-

ters are much smaller than the default values for vegetation 

type 6 by Sellers et al. (1996a), which indicates the unique 

characteristics of vegetation in the Tibetan Plateau. The 

measured soil porosity is relatively high yet close to meas-

urements presented in a recent study by Chen et al. (2012). 

The initial values of the state variables are calculated 

from the observed data, including air (canopy) temperature 

and humidity, and soil temperature and moisture. 

2  Energy balance simulation and uncertainty identifi-

cation 

Based on the parameter setting described above, the energy 

budget for the A’rou meadow is simulated using the SiB2 

model. To avoid the freezing and thawing process, which is 

not described in the SiB2 model (Sellers et al., 1996b; Yang 

et al., 2009), the energy balance is only simulated and eval-

uated from 11 June to 30 September 2008. 

Figure 2 shows the monthly averaged daily variation in 

each surface energy budget component. As expected, the net 

radiation simulations are quite consistent with the observa-

tions. However, the sensible and latent heat fluxes tend to 

be overestimated and underestimated, respectively, com-

pared with the observations. The biases in the heat flux 

simulations are observed mainly in the data collected during 

the daytime. The soil heat flux is slightly overestimated. To 

further examine the biases in the sensible and latent heat 

fluxes in the daytime data, the scatter plots and linear re-

gression equations of the surface energy budget simulated 

using the SiB2 model are shown against the observations 

during the unstable stratification condition (daytime) in 

Figure 3. The net radiation simulations and observations 

approximately follow the 1:1 line, and the determination 

coefficient R
2
 is close to 1. This result indicates that the 

SiB2 model has a high capability of radiation balance simu-

lation, and the values of surface spectral character parame-

ters are appropriate.  

The sensible, latent and soil heat fluxes simulated for an 

unstable stratification condition have different levels of bias. 

The sensible and soil heat fluxes are overestimated by 28% 

and 7.7%, respectively, while the latent heat flux is under-

estimated by 12% compared with the observations. Howev-

er, due to the lack of energy balance closure widely existing 

in EC measurements, the bias of latent heat flux may have 

been underestimated. As mentioned earlier, the energy bal-

ance ratio at the A’rou site during June to September 2008 

is about 87%, which indicates that the underestimation  

Table 2  Parameter setting for the SiB2 model at A’rou sitea) 

Parameter Value Parameter Value 

z2* Canopy-top height (m) 0.2 Vmax0 Maximum rubisco capacity, top leaf (mol m2 s1) 3×105 

z1* Canopy-base height (m) 0.02 ε Intrinsic quantum efficiency (mol mol1) 0.05 

zc* Inflection height for leaf-area density (m) 0.08 G1 Augmentation factor for momentum transfer coefficient 1.449 

zs* Ground roughness length (m) 0.005 
G4 

Transition height factor for momentum transfer  

coefficient 
11.785 

χL Leaf-angle distribution factor 0.3 

lw* Leaf width (m) 0.008 m Stomatal slope factor 4.0 

ll * Leaf length (m) 0.08 b Minimum stomatal conductance (mol m2 s1) 0.04 

DT* Total soil depth (m) 1.5 βce Photosynthesis coupling coefficient 0.8 

Dr * Root depth (m) 0.4 βρs Photosynthesis coupling coefficient 0.95 

D1 * Depth of surface soil layer (m) 0.05 ψc One-half inhibition water potential (m) 200 

αV,l Leaf reflectance, visible, live 0.105 fd Leaf respiration factor 0.025 

αV,d Leaf reflectance, visible, dead 0.36 s1 High temperature stress factor, photosynthesis (K1) 0.3 

αN,l Leaf reflectance, near IR, live 0.58 s2 Half-inhibition high temperature, photosynthesis (K) 313 

αN,d Leaf reflectance, near IR, dead 0.58 s3 Low temperature stress factor, photosynthesis (K1) 0.2 

δV,l Leaf transmittance, visible, live 0.07 s4 Half-inhibition low temperature, photosynthesis (K) 288 

δV,d Leaf transmittance, visible, dead 0.22 s5 High temperature stress factor, respiration (K1) 1.3 

δN,l Leaf transmittance, near IR, live 0.25 s6 Half-inhibition high temperature, respiration (K) 328 

δN,d Leaf transmittance, near IR, dead 0.38 Topt Optimum temperature for vegetation growth (K) 298 

αs,V Soil reflectance, visible 0.1 B Soil wetness exponent 5.39 

αs,N Soil reflectance, near IR 0.2 ψs Soil tension at saturation (m) 0.15 

zwin* Wind observation height (m) 2.03 Ks Hydraulic conductivity at saturation (m s1) 7.0×106 

zwin* Air temperature and humidity observation height (m) 2.07 θs* Soil porosity (volume fraction) 0.60 

LT** Leaf area index 
1.9, 3.3, 

3.3, 1.3 
V** Vegetation cover (%) 

67, 95, 

94, 78 

a) Items with marked by * are set based on prior knowledge and field survey. Items marked by ** are monthly mean data from June to September, 2008. 

Others are obtained from Sellers et al. (1996a). 
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Figure 2  Comparison of simulated monthly-mean diurnal variations of surface energy budget against observations 

of latent heat flux may be greater than 12% and the overes-

timation of sensible heat flux may be less than 28%. The 

bias in surface energy fluxes in the Tibetan Plateau was also 

identified in some past studies. For example, Gao et al. 

(2002) found that the SiB2 overestimates the sensible heat 

flux at Naqu. 

On all accounts, after using in-situ observed data, re-

motely sensed data, and default values from Sellers et al. 

(1996a) for model parameter setting and states initialization, 

the modeled sensible heat flux shows a positive bias and 

latent heat flux shows a negative bias to some extent. As the 

parameterization scheme of heat flux in the SiB2 model is 

based on the energy balance equation shown in eqs. (1a) 

and (1b), the calculation error of either the sensible heat 

flux or the latent heat flux will affect the other. Therefore, 

we analyzed the simulated sensible and latent heat fluxes 

sequentially to identify the source of the bias. 
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where Tc, Tg and Td are temperatures (K); Rnc and Rng are net 

radiations (W m
−2

); Hc and Hg are sensible heat fluxes   

(W m
−2

); LEc and LEg are latent heat fluxes (W m
−2

); Cc, Cg 

and Cd are effective heat capacities (J m
−2

 K
-1

); ηd is the 

daylength (s); ξcs and ξgs are energy transfers due to phase 

changes (W m
−2

). The subscript “c” refers to the canopy, 

“g” to the soil surface, “d” to deep soil. 

2.1  Process analysis on sensible heat flux overestima-

tion 

The uncertainty of the sensible heat flux estimation in the 

SiB2 model may arise from two components: the aerody-

namic resistances (ra, rb, and rd) and the potential difference 

between the surface and air temperatures. 

 ( ) /
c c a p b
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H T T c r  , (2b) 

 ( ) /
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H H T T c r   . (2c) 

where Ta is the canopy air temperature (K); Tm is the air 

temperature at an observing height (K); ρ is the density of 

air (kg m
−3

); cp is the specific heat of air (J kg
−1

 K
−1

); rb is 

the bulk canopy boundary layer resistance (s m
−1

); rd is the 

aerodynamic resistance between ground and canopy air 

space (s m
−1

); ra is the aerodynamic resistance between 

canopy air space and reference height (s m
−1

).  

In the SiB2 model, the calculation of aerodynamic re-

sistances are affected by atmospheric boundary-layer wind 

speed (um), canopy top wind speed (u2), aerodynamic 

roughness length (z0), bulk boundary-layer resistance coef-

ficient (C1) and ground to canopy air-space resistance coef-

ficient (C2). um is measured and u2 is calculated from um. z0, 

C1, and C2 are calculated through a canopy model based on 

the mixing-length theory (Watanabe and Kondo, 1990) us-

ing observed vegetation structure parameters. These calcu-

lations are relatively rigorous in theory. 
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where C3 is the aerodynamic (canopy air-space to reference 

height) resistance coefficient; k is the von Karman constant; 

d is the zero plane displacement height (m); zm is the at-

mospheric boundary-layer reference height (m). 

Table 3 presents the values of z0, C1, and C2 for the A’rou 

meadow from June to September 2008 calculated from the 

mixing-length theory. The value of z0 is reasonable accord-

ing to its order of magnitude. The values of C1 and C2 are 

also within the normal range for alpine meadows according 

to a sensitivity analysis of Tibetan short grass prairie in the 

GAME/Tibet experiment conducted by Gao et al. (2002). 

Nevertheless, we tested the sensitivities of sensible heat flux 

to z0, C1, and C2, by artificially decreasing z0 and increasing 

C1 and C2. As shown in eq. (3), decreasing z0 and increasing 

C1 and C2 can increase the aerodynamic resistances. Table 4 

gives the linear regression slope of the modeled sensible 

heat flux against EC measurements (for unstable stratifica-

tion). It shows that the sensible heat flux simulations do not 

benefit much from the adjustment of z0 and C1. The linear 

regression slope of sensible heat flux decreased from 1.23 to 

1.15, which indicates that the overestimation of sensible 

heat flux decreases from 27.7% to 15.4% by the positive 

adjustment of C2. However, a comparison of the linear re-

gression slopes of latent and soil heat fluxes with observa-

tions (Table 5) shows that the latent heat flux is not sensi-

tive to positive adjustment of C2, while the soil heat flux has 

a comparatively obvious increase. The linear regression 

slope of soil heat flux increases from 1.08 to 1.16, which 

implies that the positive adjustment of C2 will indeed de-

crease the sensible heat flux. However, the reduced portion 

of energy has not been added to the latent heat flux but to 

the soil heat flux. Thus, C2 mainly affected the energy allo-

cation between the sensible and soil heat fluxes, which is 

not a problem encountered in this research. In conclusion, 

the main uncertainty in SiB2 is not introduced because of 

aerodynamic parameters. 

Another factor affecting the sensible heat flux is the dif-

ference between surface and air temperatures. Since the 

AWS records air temperature at a reference height, and this  

Table 3  z0, C1, and C2 calculated from the mixing-length theory 

 June July August September 

z0 (mm) 24.2 25.4 25.4 22.6 

C1 19.8 17.6 17.6 22.8 

C2 84.8 87.5 87.5 82.2 

Table 4  The sensitivities of sensible heat flux against z0, C1, and C2 (for unstable stratification)a) 

 Original value 50% negative bias added to z0 100% positive bias added to C1 100% positive bias added to C2 

Regression slope 1.28 1.28 1.25 1.15 

a) The regression slope is the linear regression slope between simulations and observations, which is equivalent to the coefficient of x in Figure. 3. Ideally 

it should be 1. 

Table 5  The sensitivity of latent and soil heat flux against C2 (for unstable stratification) 

 Original value 100% positive bias added to C2 

Regression slope of LE 0.88 0.87 

Regression slope of G0 1.08 1.16 
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Figure 3  Scatter plots of surface energy budget modeled by the SiB2 model against observations in unstable stratification condition (daytime) 

measurement is assumed to be unbiased. Thus, the key fac-

tor is the simulation of land surface temperature. Surface 

temperature in the SiB2 model is estimated as two inde-

pendent state variables, namely, vegetation canopy temper-

ature and surface soil temperature, which are difficult to 

evaluate separately. Here, we derived the surface tempera-

tures from long-wave radiations based on the Stefan- 

Boltzmann law considering environmental radiation contri-

bution. To ensure that the results are comparable and to 

avoid the impact of the uncertainty in the emissivity, the 

observed surface temperature is calculated from observed 

long wave radiations and simulated surface temperature is 

calculated from the simulated long wave radiations. 

 4 (1 )
lu ld

R T R     . (4) 

where Rlu and Rld are the upward and downward long wave 

radiations, respectively. The land surface emissivity ε is set 

to 0.985 based on the underlying surface condition and the 

Stefan-Boltzmann constant ζ is 5.67 × 10
−8

 W m
−2 

K
−4

.  

Figure 4 compares the simulated and observed monthly 

mean diurnal variations in the potential difference between 

surface and air temperatures. There is no obvious overesti-

mation of this difference. According to eqs. (1a) and (1b), 

the canopy and soil temperatures are two state variables, 

and they are restricted by the energy balance. Any uncer-

tainty in the sensible or latent heat fluxes can cause uncer-

tainty in the surface temperature. Therefore, it is difficult to 

conclude whether the sensible heat flux estimation module 

or the latent heat flux estimation module is the dominant 

factor causing the bias based solely on the temperature 

 

 

Figure 4  Comparison of the simulated and observed monthly mean diurnal variations in potential difference between surface temp erature (Tg) and air 

temperature (Ta).
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difference between surface and air.  

However, based on the above sensitivity analysis of the 

key parameters in the sensible heat flux calculation, the 

overestimation of the sensible heat flux and the underesti-

mation of the latent heat flux in the A’rou meadow are 

much more likely to be caused by the latent heat flux calcu-

lation module rather than the sensible heat flux calculation 

module. This could be a result of the insufficiency of the 

evapotranspiration process simulation, which would lead to 

the underestimation of the latent heat flux. 

2.2  Process analysis on latent heat flux underestima-

tion 

The estimation of latent heat flux is determined by the ca-

pability of soil evaporation and vegetation transpiration 

process modeling. The energy partition between the sensible 

and latent heat fluxes is unbiased in September, as seen 

from Figures 2(b) and 2(c). The bias occurs in June, July, 

and August. The monthly averaged LAI in A’rou meadow is 

the highest in July and August, all reaching 3.3, derived 

from MODIS LAI product. Because the simulation starts 

from June 11, the mean LAI in June used for modeling is 

2.1, whereas the mean LAI in September is only 1.3, indi-

cating a significant decrease from August to September. 

This information demonstrates that the vegetation grows 

best from June to August. 

As the most significant difference between September 

and the other three months, i.e., June, July, and August, is 

the vegetation growth period, the negative bias in the latent 

heat flux estimation may be caused mainly by the insuffi-

ciency of the vegetation transpiration simulation. The tran-

spiration simulation result is based on two aspects: the wa-

ter content of the root layer soil and the intensity of physio-

logical processes, including photosynthesis and respiration. 

Figure 5 shows that the root layer soil moisture is not un-

derestimated. Instead, the decrease rate of simulations dur-

ing dry periods is lower than that of observations. This in-

dicates that the underestimation of the latent heat flux is not 

the result of the lack of soil water. One rational explanation 

is that the physiological process of vegetation has not been 

fully simulated and the transpiration is underestimated, 

which leads to the low decrease rate of the soil moisture. 

The main parameter in vegetation physiological process-

es affecting transpiration is stomatal resistance (conduct-

ance), rs (=1/gs). Higher conductance yields higher canopy 

transpiration, as indicated by eq. (5a). In the first version of 

the SiB model, stomatal resistance is described by an em-

pirical model without consideration of photosynthesis. 

However, the SiB2 model includes a photosynthesis-  

conductance model, which has a significant influence on 

vegetation photosynthesis and transpiration process model-

ing. The photosynthesis-conductance method calculates 

stomatal conductance gs as a function of net assimilation 

rate An through eq. (5b). Net assimilation rate is calculated 

as the difference between the leaf assimilation rate and leaf 

respiration rate through eq. (5c). The leaf assimilation rate 

is the minimum of three limiting rates, shown in eq. (5d).  
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where e
*
(Tc) is the saturation vapor pressure at temperature 

Ta (Pa); ea is the vapor pressure in canopy air space (Pa); gc 

and gs are the canopy stomatal conductance and leaf sto-

matal conductance, respectively (mol m
2

 s
1

); γ is the psy-

chrometric constant (Pa K
1

); Wc is the canopy wetness - 

snow cover fraction; m is the stomatal slope factor; cs is the 

CO2 partial pressure at leaf surface (Pa); hs is the relative 

humidity at leaf surface; p is the atmospheric pressure (Pa); 

b is the minimal stomatal conductance (mol m
2

 s
1

); An is 

the net assimilation rate (mol m
2

 s
1

); A is the leaf photo-

synthetic rate (mol m
2

 s
1

); Rd is the leaf respiration rate 

(mol m
2

 s
1

); wc is the Rubisco (leaf enzyme) limited rate 

of assimilation (mol m
2

 s
1

); we is the light-limited rate of 

assimilation (mol m
2

 s
1

); and ws is the carbon compound 

export limitation or PEP-Carboxylase limitation on photo-

synthesis (mol m
2

 s
1

). 

Thus, the stomatal conductance is restricted by Rd and  

 

 

Figure 5  Comparison of the simulated and observed soil moisture (v/v) of the root layer (5–40 cm). 
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the three assimilation limitation components, wc, we, and ws. 

For type 6 vegetation, to which A’rou belongs, Rd, wc, we, 

and ws can be given as: 

 0.025
d m

R V , (6a) 

 
c m

w V , (6b) 

 
4

( ) (1 ) 
 

  
e

w F n , (6c) 

 42 10 /
s m i

w V c p  . (6d) 

where Vm is the maximum catalytic capacity of Rubisco 

(mol m
2

 s
1

); Fπ is the flux of Photosynthetically Active 

Radiation (PAR) incident on the leaf (W m
2

); n is the vec-

tor of leaf normal; ε4 is the intrinsic quantum efficiency for 

CO2 uptake (mol); ωπ is the leaf-scattering coefficient for 

PAR; ci is the partial pressure of CO2 in the leaf interior 

(Pa); p is the atmospheric pressure (Pa). 

One main parameter related to the Fπ·n is LAI, obtained 

from the MODIS product, which gives a reasonable value. 

Vm is a key parameter for the calculation of wc and ws. It is 

parameterized in the photosynthesis-conductance model as 

follow: 

 
max 2

( ) ( )
m T c w

V V f T f W , (7) 

where Vmax is the maximum catalytic capacity of the leaf; 

fT(Tc) and fw(W2) are two functions of canopy temperature 

and soil moisture, respectively. 

As stated above, the soil moisture in the root layer has 

not been underestimated. Therefore, the problem may exist 

in fT(Tc), which is expressed as follows: 

 
1 2
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 ( ) /10
t c opt
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where s1 is the high temperature inhibition factor, photo-

synthesis (K
1

). s2 is the half-inhibition high temperature 

(K). s3 is the low temperature inhibition factor, photosyn-

thesis (K
1

). s4 is the half-inhibition low temperature (K). s5 

is the high temperature inhibition factor, respiration (K
1

). s6 

is the half-inhibition high temperature (K). Topt is the opti-

mum temperature for vegetation growth (K). There is no 

more detailed parameterization of Topt. It is set to be 298 K 

(25°C). 

In previous applications and evaluations, the rationality 

of the parameterization of fT(Tc) has not been fully consid-

ered. Under normal meteorological conditions, the optimum 

temperature for vegetation growth is relatively fixed and the 

inhibition parameters only vary with vegetation type. The 

SiB2 model classifies vegetation into nine types. Each type 

has a fixed set of temperature inhibition parameters. For 

instance, the A’rou meadow belongs to grass land type 6 

(Sellers et al., 1996a), for which the half-inhibition high and 

low temperatures are set to be 313 and 288 K, respectively. 

This parameter setting, especially setting the optimum tem-

perature for vegetation growth to 25°C for all vegetation 

types, might not be appropriate for extremely high-cold 

regions, such as A’rou. The air temperature from 11 to 18 

June 2008, shown in Figure 6, indicates that most periods 

are under the default half-inhibition low temperature (288 

K), below which vegetation should grow slowly. However, 

the MODIS-derived LAI data indicate that the vegetation 

grows well in June, July, and August. Therefore, the default 

setting of optimum and inhibition temperatures is not ap-

propriate when the model is applied to extremely high-cold 

regions. Interestingly, Rosolem et al. (2010) also found that 

default inhibition parameters were not appropriate for sim-

ulations of tropical rainforest in an artificial ambient emu-

lating characteristics of the Amazon in Biosphere 2. 

As shown in eqs. (5a)–(5d), the insufficient simulation of 

vegetation physiological process leads to an underestima-

tion of stomatal conductance, thereby leading to an underes-

timation of latent heat fluxes. The negative bias in latent 

heat fluxes will accordingly result in a positive bias in sen-

sible heat fluxes by increasing the prognostic variable can-

opy temperature (Tc) through eqs. (1a) and (2a).  

3  The modification of Vegetation Physiological 

Parameters and evaluation 

Vegetation growth temperature range, denoted by optimum 

temperature and inhibition parameters, is related to the veg-

etation type and local climate (Lambers et al., 2008). For 

instance, the optimum temperature for Notodanthonia peni-

cillata could be as high as 27.0°C, whereas that for C. 

rigida might be as low as 9.0°C. Growth temperature even 

varies within species, e.g., the maximum growth tempera-

ture of Festuca novae-zelandiae populations could be 

18.0°C at low latitudes whereas this decreases to 12.0°C for 

populations at high latitudes (Scott, 1970). 

To obtain accurate information on vegetation growth 

temperature for a certain region, some detailed information 

is required, such as species, structure of the local plant 

community, and growth temperature range of the species. 

However, obtaining such information is not practical owing 

to time and cost constraints. Most land surface models, in-

cluding SiB2, classify vegetation cover into different types 

to simplify the parameterization schemes and make better 

use of the observed data, especially remote sensing data, for 

large-scale simulation and forecasting. 

As discussed earlier, the default vegetation growth tem-

perature range in the SiB2 model is not appropriate for sim-

ulating the climate features of extremely high-cold regions. 

Therefore, a relatively accurate and suitable scheme needs 
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to be formulated to obtain optimum and inhibition tempera-

tures of vegetation growth in extremely high-cold region. 

Each of the various plant species around the world has their 

own growth temperature range. The local climate and envi-

ronment select appropriate species to survive under unique 

circumstances, and plants growing under specific climate 

condition tend to adapt themselves to the local environment. 

There is abundant evidence indicating that plants adapt their 

photosynthetic process to local temperature through a pro-

cess known as temperature acclimation (Badger et al., 1982; 

Berry and Bjorkman, 1980; Field et al., 1995; Seemann et 

al., 1984). The CASA (Carnegie-Ames-Stanford Approach) 

model (Field et al., 1995), for instance, calculates the opti-

mum temperature by the mean temperature during the 

month of maximum NDVI. Cui (Cui, 2013) estimated the 

realistic optimum growth temperature in China and found 

that the lowest referenced optimum temperature, approxi-

mately 7°C, occurs in the Tibetan Plateau. In this study, we 

introduced a scheme that sets the average daytime tempera-

ture in the period with fast vegetation growth as the opti-

mum growth temperature. The half-inhibition high and low 

temperatures are adjusted by the same temperature differ-

ence. 

Recent studies on temperature reconstructions using 

tree-ring records show that the mean summer temperatures 

in the eastern Tibetan Plateau have been around 7 to 12°C 

for the past one thousand years (Fan et al., 2009; Li et al., 

2012; Xu et al., 2011), indicating that summer temperature 

is consistently at least 13°C lower than 25°C for a long pe-

riod. In this study, we calculate the average daytime tem-

perature between June and July in 2007 and 2008, to be 

about 285 K, which is 13 K lower than the default value. 

The optimum and half-inhibition temperatures are then de-

ducted 13 K from the default values as shown in Table 6. 

Figure 7 shows the simulated results with the adjusted tem-

perature parameters. The biases in sensible heat flux and 

latent heat flux are clearly reduced. More specifically, sim-

ulated net radiation is generally consistent with the observa-

tions. The determination coefficient R
2
 is 0.99 (RMSE=15.7 

W m
−2

), and the model slightly overestimates the net radia-

tion, by ~1.4% according to the slope of the linear regres-

sion function. The sensible, latent, and soil heat fluxes are 

overestimated by 6.3%, 1.1%, and 4.4% respectively, which  

Table 6  Adjusted temperature parameters 

 Topt S2 S4 S6 

Temperatures (K) 285 300 275 315 

 

is a considerable improvement over the previous simula-

tions. The determination coefficient of sensible heat flux is 

only 0.52 (RMSE = 39.1 W m
−2

). Nevertheless, there are 

several outliers, which increase the uncertainty. The simu-

lated latent heat flux has a relatively high correlation with 

the observations. The determination coefficient is 0.86 

(RMSE = 35.4 W m
−2

). The uncertainty in soil heat flux 

simulations is relatively high, and the determination coeffi-

cient of the soil heat flux is only 0.40 (RMSE = 66.0 W m
−2

). 

According to the scatter figure of the soil heat flux (Figure 

7(d)), the dots located to the upper left of the 1:1 line are 

dominant, indicating that the positive soil heat flux (down-

ward) is overestimated and some negative soil heat flux 

observations (upward) are shown to be positive in the simu-

lations. However, the bias in the model simulations has 

been reduced significantly by correcting the optimum and 

inhibition temperature of vegetation growth. The sensible, 

latent, and soil heat fluxes seem to be overestimated, but 

here we have not accounted for the lack of energy balance 

closure (about 13%). Therefore, the errors in the simulated 

heat fluxes are within the range for uncertainties in the 

measured fluxes. 

Figures 8((a)–(d)) shows the simulation results of each 

energy budget components at A’rou site from 19 to 23 June, 

2008. The sensible heat flux is overestimated on 22 June, 

especially around noontime, viewed from Figure 8(b).  But 

this situation does not appear in other days around 22 June. 

No significant bias exists in latent heat flux simulations, 

including 22 June (Figure 8(c)). However, there is a notable 

negative bias in soil heat flux on 22 June.  

Figures 8((e)–(f)) depict the land surface radiative tem-

perature, soil moisture in the root layer, and observed pre-

cipitation from 19 to 23 June. The surface temperature is 

underestimated to some extent, which should have caused a 

negative bias in both sensible heat flux and soil heat flux. 

However, the sensible heat flux is overestimated, and there-

fore, some energy that should be partitioned to soil heat flux 

has been assigned to sensible heat flux. This indicates that the 

energy transfer within the soil was not simulated well by the  

 

 

Figure 6  Observed air temperature at the A’rou site (at a 2-m height) from 11 to 18 June 2008 
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Figure 7  Scatter plots of the surface energy budget modeled with updated parameters against observations for an unstable stratification condition (daytime) 

model. 

Figure 8(f) shows that there were two rainfall events 

within these five days: one on the evening of 19 June and 

the other on the evening of 21 June, with the amounts of 8.8 

mm and 13.5 mm, respectively. This led to an increase in 

the soil moisture and cloudlessness for a few days. The in-

crease in the soil moisture is confirmed from the root layer 

soil moisture curve (Figure 8(f)). The high net radiation on 

20 and 22 June indicates clear skies and high visibility after 

the rainfall events. The magnitudes of net radiation on 20 

and 22 June were twice that of previous days, which should 

result in an increase in the sensible, latent, and soil heat 

fluxes. There is a clear increase in the observed values of 

the latent and soil heat fluxes, although the increase in the 

sensible heat flux is not significant. The trends shown from 

the observed data are reasonable. First, the increase in the 

soil moisture will cause an increase in evapotranspiration, 

which takes more energy away through latent hear flux. 

Second, it will cause an increase in the soil thermal conduc-

tivity, which in turn leads to an increase in the soil heat flux.  

The increases in the latent and soil heat fluxes will deplete 

most of the energy resulting from the increase in the net 

radiation, which in turn slows down the increase in the sur-

face temperature. Moreover, the increase in the soil mois-

ture will increase the soil thermal capacity, which further 

retards the soil temperature increase. Therefore, the ob-

served data do not show a drastic increase in sensible heat 

flux.  

This energy partition pattern shown in observed data has 

not been fully simulated by the model. From the simulation 

results, the soil heat flux did not show sufficient response to 

changes of the environment, and therefore, extra energy was 

partitioned to sensible heat flux. The insufficient simulation 

of the soil heat flux occurred because the impact on soil 

thermal conductivity is not sufficiently represented in the 

model. Another possible reason is that water was not re-

tained long enough in the soil, which hindered the increase 

in the soil thermal conductivity. This may be related to the 

soil water and energy transfer processes, which are simu-

lated with uniform values in all layers for stratified soil tex-

ture, porosity, and hydraulic conductivity (van der Velde et 

al., 2009; Yang et al., 2005). Although some studies have 

focused on this issue (Gao et al., 2007), improvements on 

parameterization of soil water and energy transfer process 

require more investigation. 

Figure 9 provides another example of energy budget dai-

ly variation from 12 to 16, August 2008. The estimated en-

ergy budget components are in good agreement with the  
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Figure 8  Simulation results from 19 to 23 June, 2008. Solid curves represent the simulation results. Circles (a–e) and the dashed curve (f) represent ob-

served data. Bars in (f) represent the observed precipitation 

observations, except for 15 August, as seen in Figures 

9((b)–(f)). Both sensible and latent heat fluxes are overes-

timated in daytime, whereas the soil heat flux and land sur-

face temperature are well estimated. Therefore, apart from 

the uncertainty of the model estimation, the energy closure 

problem of the flux observation is also a major source of the 

overall error. As shown in Figure 9(a), the net radiation was 

higher on 15 August than on 14 and 16 August. However, 

the observed sensible and soil heat fluxes are not higher and 

the observed latent heat flux is even lower on 15 August. 

Therefore, it can be inferred that there is a significant lack 

of energy balance closure in the observed data. Figure 9(f) 

shows the energy closure status of the observations in these 

five days. The difference between energy income and out-

come (Rn(H+LE+G0)) is very large on 15 August. The 

daily energy balance ratio is only 59.78% on 15 August, 

whereas the ratios are above 75% on other days (Table 7). 

Thus, the difference between the observation and the simu-

lation does not imply that the simulation is very biased. 

Table 7  Energy balance closure of observations at A’rou site from 12 to 

16 August, 2008 

Date of August 12 13 14 15 16 

Energy balance ratio (%) 80.9 82.3 93.9 59.8 75.1 

4  Discussion and conclusion 

We have simulated and evaluated the land surface energy 

budget at the A’rou meadow using AWS observations, EC 

observations, field surveys, and remote sensing data. The 

results obtained when using default vegetation physiological 

parameters show that the sensible, latent, and soil heat flux  

estimations have a 28% positive bias, a 13% negative bias, 

and a 7% positive bias, respectively. By analyzing the key 

parameters and states in the calculation of the sensible heat 

flux and latent heat flux, we identified that the bias was 

caused by selection of inappropriate optimum growth tem-

perature and inhibition temperatures. In the SiB2 model,  
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Figure 9  Simulation results from 12 to 16 August, 2008. Solid curves are simulations and circles are observations 

the default optimum growth temperature is set as 298 K and 

inhibition temperatures are specified by the vegetation types. 

In general, these parameters do not change when the model 

is applied in different regions. However, this parameter set-

ting is not appropriate for the eastern and central Tibetan 

Plateau. Although this region is at a high altitude and is ex-

tremely cold, there is a considerable precipitation during 

summer owing to the onset of the eastern Asian summer 

monsoon. Therefore, vegetation grows well during summer. 

Thus, an optimum growth temperature of 298 K is much 

higher than the actual maximum daily temperature in sum-

mer. In this study, the average daytime temperature during 

the period in which the vegetation growing fastest (June and 

July) was selected as the optimum growth temperature, and 

the inhibition temperatures were adjusted by the same level 

based on the optimum temperature. The biases in sensible, 

latent, and soil heat flux were reduced to a large extent (to 

less than 7% bias). 

As previously stated, abundant evidence indicates that 

optimum/inhibition growth temperatures change with the 

environment temperature (Badger et al., 1982; Berry and 

Bjorkman, 1980; Cui, 2013; Field et al., 1995; Scott, 1970; 

Seemann et al., 1984). The physiological mechanism behind 

this is called temperature acclimation. This process is a 

constituent part of the ecological succession. Furthermore, 

there are other novel approaches to estimate optimum and 

inhibition temperatures for a large area, e.g., using remotely 

sensed vegetation information (Cui, 2013). Therefore, the 

best way for constructing vegetation growth temperature 

parameters in regional and global scale needs further as-

sessments. 

The process analysis is effective for identifying the pa-

rameter uncertainties and improving the land surface mod-

eling. The advantages of this approach are that parameter 

adjustments are based on model responses to physical pro-

cesses and that the model parameter set is reconstructed 

based on assumptions with physical implications. However, 

this procedure is conducted sequentially and sensitivity 
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analysis is essentially local analysis. Thus, one limitation of 

this scheme is that the interactions between parameters are 

not sufficiently considered, and this could have a significant 

impact on the overall uncertainty for complex models. One 

potential solution for addressing this issue is to estimate 

parameters using automatic global optimization approaches, 

e.g., the Genetic Algorithm (GA) (Wang, 1991), the Shuf-

fled Complex Evolution (SCE) method (Duan et al., 1992), 

and Markov Chain Monte Carlo (MCMC) based methods 

(Kuczera et al., 2010; Vrugt et al., 2008). These methods 

are well known as model calibration tools. For instance, 

Zhu et al. (Zhu et al., 2013) also used A’rou data and mod-

eled actual ET using a two-source model, but they resorted 

to an MCMC-based calibration approach to estimate pa-

rameters and found that the seasonal variation in canopy 

conductivity should be considered for extremely high-cold 

regions. However, calibration methods automatically search 

for parameter sets that fit observations, without due consid-

eration of the physical implications of the parameters. 

Therefore, these methods are mostly implemented for con-

ceptual models with fewer parameters and less strict physi-

cal implications (Gupta et al., 1998). Land surface models 

are mostly physically based and any changes in parameters 

should be assessed carefully with physical explanations, and 

this challenges the application of auto-calibration methods 

in land surface modeling. Few studies have shown that au-

to-calibration methods could improve the predictability of 

land surface models. These calibration works were carefully 

conducted for conceptualized parameters in models with 

strict constraints and multi-source observations (Crow et al., 

2003; McCabe et al., 2005; Troy et al., 2008). Therefore, 

the next step is to investigate parameter auto-calibration 

approaches for improving the SiB2 simulation. One issue 

with this is that although the bias has been significantly re-

duced, the error has not been reduced considerably, as seen 

from R
2
 and RMSE values. This is because adjusting pa-

rameters could correct the bias in flux estimation, but the 

overall uncertainty may come from multiple sources, e.g., 

initial state variables, forcing data, validating data, and 

model structure, in addition to parameters. The uncertainty 

could be further reduced by incorporating data assimilation 

scheme to correct error, before which our parameters setting 

scheme could be valuable to be implemented, as data assim-

ilation methods should be based on the assumption of unbi-

ased model and observation errors. Besides, further investi-

gating water and energy transfer processes and improving 

the accuracy and precision of observations, especially eddy 

covariance data, are also important scientific tasks in future 

work. 
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