
Remote Sensing of Environment 115 (2011) 2330–2341

Contents lists available at ScienceDirect

Remote Sensing of Environment

j ourna l homepage: www.e lsev ie r.com/ locate / rse
Estimating zero-plane displacement height and aerodynamic roughness length using
synthesis of LiDAR and SPOT-5 data

X. Tian a,b,⁎, Z.Y. Li a, C. van der Tol b, Z. Su b, X. Li c, Q.S. He d, Y.F. Bao d,e, E.X. Chen a, L.H. Li b

a Research Institute of Forest Resource Information Techniques, Chinese Academy of Forestry, Wanshoushanhou, 100091, Beijing, PR China
b Faculty of Geo-Information Science and Earth Observation, University of Twente, Hengelosestraat 99, 7500 AA, Enschede, The Netherlands
c Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Donggang West Road 320, 730000, Lanzhou, PR China
d Institute of Remote Sensing Applications, Chinese Academy of Sciences, Datun Road, 100101, Beijing, PR China
e Beijing Institute of Space Mechanics and Electricity, Zhongguancun Road 99, 100190, Beijing, PR China
⁎ Corresponding author at: Research Institute of
Techniques, Chinese Academy of Forestry, Wanshou
China. Tel.: +86 1062889804; fax: +86 1062889164.

E-mail address: tianxin@caf.ac.cn (X. Tian).

0034-4257/$ – see front matter © 2011 Elsevier Inc. Al
doi:10.1016/j.rse.2011.04.033
a b s t r a c t
a r t i c l e i n f o
Article history:
Received 30 September 2010
Received in revised form 20 April 2011
Accepted 28 April 2011
Available online 28 May 2011

Keywords:
Zero-plane displacement
Aerodynamic roughness length
WATER campaign
LiDAR
SPOT-5
Eddy covariance
In this study, a combination of low and high density airborne LiDAR and satellite SPOT-5 HRG data were used
in conjunction with ground measurements of forest structure to parameterize four models for zero-plane
displacement height d(m) and aerodynamic roughness length z0m(m), over cool-temperate forests in Heihe
River basin, an arid region of Northwest China. For the whole study area, forest structural parameters
including tree height (Ht) (m), first branch height (FBH) (m), crown width (CW) (m) and stand density (SD)
(trees ha−1) were derived by stepwise multiple linear regressions of ground-based forest measurements and
height quantiles and fractional canopy cover (fc) derived from the low density LiDAR data. The high density
LiDAR data, which covered a much smaller area than the low density LiDAR data, were used to relate SPOT-5's
reflectance to the effective plant area index (PAIe) of the forest. This was done by linear spectrum
decomposition and Li–Strahler geometric–optical models. The result of the SPOT-5 spectrum decomposition
was applied to the whole area to calculate PAIe (and leaf area index LAI). Then, four roughness models were
applied to the study area with these vegetation data derived from the LiDAR and SPOT-5 as input. For
validation, measurements at an eddy covariance site in the study area were used. Finally, the four models
were compared by plotting histograms of the accumulative distribution of modeled d and z0m in the study
area. The results showed that the model using by frontal area index (FAI) produced best d estimate, and the
model using both LAI and FAI generated the best z0m. Furthermore, all models performed much better when
the representative tree height was Lorey's mean height instead of using an arithmetic mean.
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1. Introduction

The Monin–Obukhov Similarity (MOS) theory (Foken, 2006;
Monin & Obukhov, 1954) has been frequently used in atmospheric
models for numerical weather prediction and climate research (Su et
al., 2001). Two parameters play a central role in MOS theory, notably
the zero-plane displacement d and the roughness height z0m (Garratt,
1994; Yang & Friedl, 2003). These two parameters significantly
influence the momentum exchange between the atmosphere and
land surface, and yet they are difficult to estimate in practice.
Therefore, studies on d and z0m can improve the understanding of the
mechanism of momentum transport (Brutsaert, 1999; Koloskov et al.,
2007; Krishnan & Kunhikrishnan, 2002).

Many methods exist to estimate d and z0m. These methods can be
classified as either experimental or remote sensing based. Experi-
mental methods are based on measurements of the vertical wind
profile in and above the canopy. A disadvantage of experimental
methods is that the results are only locally valid, and scaling to the
grid cell of a climate or land surface model is difficult (Schaudt &
Dickinson, 2000). As a consequence, most these models employ
general expressions for d and z0m as a function of the vegetation
height h, for example d/h=2/3 and z0m/h=1/8 (Garratt, 1994), or use
a look-up table based on the land cover types (Dorman & Sellers,
1989; Wieringa, 1986). Neither of these techniques can capture
variations of the density of roughness elements. Alternatives that
make the inclusion of these variations in density possible are remote
sensing based methods. Robust scaling of d and z0m to regional
applications using remote sensing data may result in representative
values for grid cells in models (Nakai et al., 2008; Su, 2002; Verhoef et
al., 1997; Wang et al., 1998; Wieringa, 1993).

In past decades, several models have been developed for d and z0m
as functions of (remotely sensed) vegetation physical structural
parameters, such as leaf are index (LAI) (Choudhury & Monteith,
1988), frontal area index (FAI) (Raupach, 1994; Schaudt & Dickinson,
2000), stand density (SD) and stem–branch–leaf distributions (Nakai
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et al., 2008). Once these parameters and vegetation height can be
retrieved from remote sensing data with sufficient accuracy, they can
be easily integrated into these models to estimate regional d and z0m
values.

Nevertheless, theoretical and practical problems have limited the
retrieval of the vegetation parameters from remote sensing data
(Braswell et al., 2003; Hu et al., 2004; Olthof & Fraser, 2007). The
optical spectrum is insensitive to some of the parameters of interest
(for example, vegetation height). To some other parameters it is only
sensitive up to a limit above which the signal saturates (for example,
LAI). In addition, retrieval techniques usually suffer from ill-posed-
ness, especially in sparsely vegetated areas with the fragmental
landscape. Therefore, application of estimating biophysical character-
istics from remote sensing should bemore reasonablewhen it is based
on physical algorithms, such as Geometric–Optical and Radiative
Transfer (GORT) model, rather than direct inference from spectral
indices (Hall et al., 1995; Song & Woodcock, 2002).

Airborne laser scanning (ALS) has recently led to a revolution in
remote sensing technology for characterizing the canopy structure,
due to its ability to measure three-dimensional information (Kou-
koulas & Blackburn, 2005; Maltamo et al., 2004). The airborne light
detection and ranging (LiDAR) sensor provides multiple echoes per
laser pulse. It has been applied successfully for measuring and
monitoring vegetation structural data across the landscape (Popescu
& Wynne, 2004; Reutebuch et al., 2005; Salas et al., 2010).

In this paper we used a combination of forest inventories, airborne
LiDAR and a satellite SPOT-5 HRG image as input for four existing
models for d and z0m. The four models were validated against d and
z0m derived from eddy covariance (EC) and wind profile measure-
ments in a needle forest located in the study area. The four tested
models are those of Choudhury and Monteith (1988), Raupach
(1994), Schaudt and Dickinson (2000) and Nakai et al. (2008)
(hereafter, CM88, RA94, SD00, and NA08 respectively).

First, by means of stepwisemultiple linear regressionmodels, low-
density airborne LiDAR data was used to derive the forest structural
parameters needed to drive the four roughness models. Moreover, for
models' requests, the LAI input was calculated based on the experi-
mental adjustment coefficient and the effective plant area index
(PAIe) which was derived from the synthesis of high density LiDAR
and SPOT-5 HRG data. Second, these parameters were validated
against field measurements obtained in the study area. Then, the
validities of the four models were compared by using forest structural
measurements and forest structural retrievals from remote sensing
data respectively. Finally, the four resulting maps (generated with the
four models) of d and z0m were used for further statistical analysis.

2. Site observation

In this studywemade use of data collected in the framework of the
Watershed Allied Telemetry Experimental Research (WATER) carried
out in the Heihe River Basin in Northwest China, in 2008 (Li et al.,
2009). Heihe River Basin, the second largest inland river basin, is
located between 97°24′–102°10′ E and 37°41′–42°42′ N, with an area
of about 130,000 km2. It consists of threemajor geomorphic units: the
southern Qilian Mountains, the middle Hexi Corridor, and the
northern Alxa Highland, and accordingly, the landscapes are various,
including glacier, frozen soil, alpine meadow, forest, irrigated crops,
riparian ecosystem, and desert (Gobi) (Fig. 1). Aiming to improve the
understanding of physical processes of the land surface–atmosphere
interaction in arid regions, the WATER project was composed of
simultaneous airborne, satellite-borne remote sensing observations
and ground-based measurements.

In addition, a network ofmeteorological stations and EC stationswas
established in alpine pasture (100°27′ E, 38°02′ N, 3033 m), mountain-
ous forest (100°15′ E, 38°32′ N, 2835 m) and mountain frontal oasis
(100°25′ E, 38°51′ N, 1519 m). Each of the EC systems comprised of at
least a 3-dimensional sonic anemometer (CSAT-3, Campbell, Inc., USA),
a CO2 and H2O gas analyzer (LI-7500, LI-COR, Inc., USA), a wind speed
sensor (014A and 034B, Met One Instruments, Inc., USA), a temperature
and relative humidity probe (HMP45C, Vaisala, Inc., Finland), a heatflux
plate (HFP01, Campbell, Inc., USA), a four-component radiometer (CM3
and CG3, Campbell, Inc., USA) and a data logger (CR5000, Campbell, Inc.,
USA).Measurements of temperature, wind speed, friction velocity were
sampled at a rate of 10 Hz and then processed into 30 min average
fluxes using EdiRe software. The processing included outlier removal,
coordinate rotation, time lag analysis, frequency response calibration,
and WPL correction. Only the data of the mountainous forest site were
used in this study. The climate at this site is a temperate continental
mountainous climate, with cold and dry winters. The annual precipi-
tation of 350 to 495 mm is concentrated in the summer (Zhou et al.,
2007). The mountainous landscape is very heterogeneous. The forest,
consisting of Picea crassifolia, mixed with a small fraction of Sabina
przewalskii trees, only survives on the shady slopes (between 2500 and
3300 m altitude), while sparse grass inhabits the sunlit slopes.

In June 2008, a campaign with an airborne LiDAR (LiteMapper
5600 system, Riegl LMS-Q560 scanner) and an onboard CCD
(DigiCAM-H/22) camera was carried out over the forest hydrology
experimental area of WATER project, the Pailugou and Dayekou
watersheds (Fig. 2). The flight height was about 800 m above the local
topography, and imaging coverage was about 10 km 6 km. With the
wavelength of 1550 nm, a pulse of 3.5 ns at 50 kHz, the overall cloud
point density about 1.88 hits per square meter (thereafter low
density) was acquired from this LiDAR system. In addition, for the
purpose of deriving the individual tree structural parameters,
repetitive flights were carried out in a small part of overall campaign
area. This intensive LiDAR observation produced the point density
with 2–7 hits per square meter (thereafter high density).

After the campaign, a scene of SPOT-5 image was acquired on 10th
August 2008. Since the beginning of the campaign, an inventory
survey on the forest has been carried out at 85 forest plots, including
Ht, diameter breast height (DBH), CW, FBH and SD. Tree with a DBH
less than 3 cmwas not included in the investigation, and PAIe of some
forest plots were measured with LAI-2000 (LI-COR, Inc., USA).

To calculate d and z0m at forest site, under neutral conditions
(|z/L|b0.05, where L is the Obukhov length), based on eddy covariance
measurements: friction velocity (m s−1) at heights z1 (20 m) and two
wind speeds U1, U2 (m s−1) at heights z1 and z2 (24 m), the following
equations were used (Nakai et al., 2008; Rooney, 2001),

d =
z2exp kU1 =U�ð Þ= exp kU2 =U�ð Þ−z1
exp kU1 =U�ð Þ= exp kU2 =U�ð Þ−1

ð1Þ

z0m =
z1−d

exp kU1 =U�ð Þ ð2Þ

As the airborne LiDAR data and SPOT-5 image were acquired in June
and August 2008, respectively, only the EC data under the neutral
conditions during these months (June–August) were applied to Eqs. (1)
and (2).Moreover, to avoid theeffect of theEC tower's shadow, only a few
wind speedmeasurements within a limited range of the wind directions
were used (Nakai et al., 2008). As azimuth angle of the sonic anemometer
(CSAT-3) is about 75° (clockwise from north), the range was chosen as
from 45° (equal to 75°–30°) to 105° (and to 75°+30°). The represen-
tative d and z0m were obtained by averaging the d and z0m calculations
from U1, U2 and U* under the neutral conditions within this range.

3. Methodology

3.1. Remote sensing models for estimating d and z0m

Fourmodels were used to calculate d and z0m from forest structural
parameters in this study, and Table 1 lists the required input for each



Fig. 1. Heihe River basin and the location of three key experimental areas (the background is the landscape map of the Heihe River basin). Source: (Li et al., 2009).
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of the four models. The estimation of the forest structural parameters
from LiDAR and SPOT was described in Section 3.3.

The first model is that of Choudhury and Monteith (1988). They
used the second-order closure model results of Shaw and Pereira
(1982) to estimate d and z0m as follows:

d = h ln 1 + X1=6
� �

+ 0:03 ln 1 + X6
� �h i

ð3Þ

z0m = z0s + 0:28hX1=2

0:3h 1−d = hð Þ
for
for

0≤ X ≤ 0:2
0:2 b X ≤ 2

�
ð4Þ

where X=0.2LAI, h is the height of the vegetation, and z0s is the soil
surface roughness, generally taken as 0.01 m or 0.1 of the height of the
vegetation understory, for raw and vegetated substrates respectively
(Shuttleworth & Wallace, 1985; Yang & Friedl, 2003).
The second model, Raupach (1994), used observation data to fit
the estimation of normalized displacement height d/h and roughness
length z0m/h, related to FAI (λ):

d
h

= 1:0−1:0−exp −
ffiffiffiffiffiffiffiffi
a1λ

p� �
ffiffiffiffiffiffiffiffi
a1λ

p ð5Þ

z0m
h

= a2exp −b2λ
c2

� �
λd2 +

z00
h

λ≤ 0:152ð Þ ð6Þ

z0m
h

=
a3
λd3

1:0−exp −b3λ
c3

� �� 	
+ f2 λ N 0:152ð Þ ð7Þ

where a1=15.0, a2=5.86, b2=10.9, c2=1.12, d2=1.33, a3=0.0537,
b3=10.9, c3=0.874, d3=0.510 and f2=0.00368 and z00/h=0.00086.



Fig. 2. Forest hydrology experimental area (the background is a mosaic of a Quickbird image overlain on a high resolution digital elevation model, DEM). Source: (Li et al., 2009).
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Frontal area index is calculated from the frontal area, Af, of each
individual needle tree as:

Af = hs⁎ws +
1
2
hc⁎wc ð8Þ

where hs is the FBH, ws is DBH, hc is the height of the crown (i.e. Ht-
FBH),wc is the CW. Then the FAI (λ) is calculated by total Af divided by
the total area of the plot.
Table 1
Required inputs for the four tested roughness models. LAI and Ht are leaf area index and
tree height, respectively.

Model LAI Hta CWa FBHa SDa

CM88 X X
RA94 X X X X
SD00 X X X X X
NA08 X X X

a These parameters were used to calculate the frontal area index (FAI) in RA94 and
SD00.
In this study, Eq. (8) was further simplified by assuming that the
frontal area of the stem is much smaller than the frontal area of the
crown (Schaudt & Dickinson, 2000):

Af =
1
2
hc⁎wc ð9Þ

The third model is that of Schaudt and Dickinson (2000), who
estimated z0m/h and d/h over coniferous forest by following
expressions:

fz = 0:3299L1:5p + 2:1713 for Lp b 0:8775 ð10Þ

fz = 1:6771 exp −0:1717Lp
� �

+ 1:0 for Lp ≥ 0:8775 ð11Þ

Lp =
fv
fc
LAI− fb

fc
Lb ð12Þ

fd = 1:0−0:3991 exp −0:1779Lp
� �

ð13Þ

where Lp is the mean plant LAI, Lb is background LAI, fb is the fraction
of the understory vegetation (fv= fc+ fb). Multiplying fz to right hand
side (RHS) of Eqs. (6) or (7) gives roughness length as a function of

image of Fig.�2
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both LAI and FAI. The d/h is quantified by multiplying Eq. (13) by
Eq. (5).

The forth model is that of Nakai et al. (2008). They considered the
effects of SD, stems/branches and leaves on d/h, based on the
following assumptions:

– The fundamental d/h is mainly determined by the SD.
– The seasonal variation depends on the LAI, and the degree of this

variation is decided by the SD.
– Total d/h is the collection of above components.

Therefore, the total effect of stems/branches and leaves on d/hwas
written as follows:

d
h

= 1:0−1:0−exp −αρsð Þ
αρs

1:0−exp −βAð Þ
βA

ð14Þ

where ρs is SD and A is LAI. Nakai et al. (2008) obtained values of the
coefficients α and β of α=0.000724 and β=0.273 by fitting Eq. (14)
tomonthly averaged d/h from the ECmeasurements in their five forest
sites. Finally, z0m/hwas parameterized by linear regression between d/
h and z0m/h as follows:

z0m
h

= 0:264 1:0− d
h


 �
ð15Þ

3.2. Model sensitivity

In order to compare model sensitivities and their dependencies on
the roughness elements conditions, a sensitivity analysis for four
models was performed. The sensitivity (Sj) of the model to an input
parameter (j) can be expressed as:

Sj =
Yj−Yr
Yr

� 100 ð16Þ

where Yj is the modeling result driven by testing variable j, Yr is the
result predicted by the reference variable r.

The sensitivity tests were conducted for Ht, LAI, FAI and SD variables
which directly and significantly affect the d and z0m computations in the
four models, as presented in Eqs. (3)–(7) and Eqs. (10)–(16)., The tree
measurement at the EC site was used as the reference data r and 0.25*r,
0.75*r, 1.25*r and 1.75*rwere used as the testing variables respectively,
because this range of values can represent the majority of local
roughness element conditions in our study area. The testing variables
were then applied to the four models with reference values used for all
other inputs to derive the d and z0m values respectively.

As the variations in all model estimates of d and z0m were the same
as the prescribed tree height deviations (i.e. d and z0m respond
linearly to h in all models), the result of tree height sensitivity was not
presented here. The sensitivity results of LAI, FAI and SD are shown in
Table 2. In general, the models are more sensitive to variations in tree
Table 2
Sensitivities of the four models with different input parameter variations, as fractions of th

Parameter modelsa LAI FAI

Deviation 0.25 0.75 1.25 1.75 0.25
Sj(%) Sj(%)

CM88-d −16.3 −3.8 3.8 12.8 – –

CM88-z0m 15.7 7.6 −7.6 −25.5 – –

RA94-d – – – – −22.6 −
RA94-z0m – – – – 100
SD00-d −16.1 −4.6 3.9 10.2 −22.6 −
SD00-z0m 26.8 7.7 −6.6 17.2 100
NA08-d −25.2 −7.2 6.2 16.4 – –

NA08-z0m 37.4 10.7 −9.3 −24.3 – –

a -d and -z0m are d and z0m models in CM88, RA94, SD00 and NA08, respectively.
height than in other parameters, except for FAI in RA94 and SD00: in
these models Sj reaches values to +100% when FAI reduces by−75%.
This value exceeds the sensitivity to tree height in both models
(−75%). As both RA94 and SD00 used the same expression to derive d
and z0m by FAI, they are equally sensitive to FAI. The sensitivity to FAI
of the SD00 model also exceeds the sensitivity to LAI. In NA08, SD
deviation generated higher discrepancy in both d and z0m estimates
than that LAI produced. It is also found that the sensitivity to LAI, FAI
and SD, is asymmetric: decreases engender higher Sj than increases.
This suggests that at higher values, the response of the models to
these variables saturates. The only exception is LAI is for CM88: when
LAI is decreased by 75%, then the error (Sj~+15.7%) is smaller than
when it is increased by 75% (Sj~−25.5). This is a particular case,
caused by the alternative expression for LAI used for values of LAI
smaller than 1 in this model (see Eq. (4)).

The sensitivities of these four models presented here are local
sensitivities that somewhat depend on the selection of the reference
values. In this study, we have only one EC station in forested area. A
more detailed sensitivity analysis with other reference values is not
very useful for this study, because the choice of reference values
would be rather subjective.

3.3. Forest structural parameters estimated by remote sensing data

The airborne LiDAR data was used to retrieve the fc, Ht, CW, FBH,
SD and PAIe of the forest. Specifically, the PAIe was derived by
integration of linear spectrum decomposition model with Li–
Strahler's geometric–optical model. In this way, SPOT-5 and LiDAR
data were combined, and uncertainties brought about bymixed pixels
could be reduced (Section 3.3.2).

3.3.1. LiDAR data process
Both low and high density LiDAR datawere processed in this study.

The low density LiDAR points were used to extract the digital surface
model (DSM) and the digital elevationmodel (DEM). First, the ground
and vegetation points were identified from the overall airborne LiDAR
points using Terrasolid software. Then, the DEMwith 0.5 m resolution
was generated based on the ground points and DSM from the
vegetation points. The normalized point (vegetation height) was
defined as the height difference between the DSM and the DEM. In
order to reduce the influence of the low shrubs, a threshold of 1.3 m
was defined to remove normalized points below it in order to refine
the vegetation points (He, 2010). The fractional vegetation cover fc
was defined as the complementary of the fraction of laser beam pulses
that reached the ground:

fc = 1− P
P0

ð17Þ

where P0 is the emitted laser beam and P is the penetrated beam.
eir reference values.

SD

0.75 1.25 1.75 0.25 0.75 1.25 1.75
Sj(%)

– – – – – –

– – – – – –

4.0 2.8 6.6 – – – –

15.8 −10.1 −24.8 – – – –

4.0 2.8 6.6 – – – –

15.8 −10.1 −24.8 – – – –

– – −28.2 −7.9 6.7 17.5
– – 41.8 11.7 −10.0 −26.0
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The other relevant structural parameters were obtained by
regression analysis against field measurements in plots with a size
of 20 by 20 m. This spatial resolution was chosen in order to be
consistent with the measured plot scale. Stepwise multiple linear
regressions between two LiDAR parameters, notably the height
quantiles (Lim & Treitz, 2004; Magnussen & Boudewyn, 1998; Næsset,
2004) and fc, and forest measurements of Ht, CW, FBH, and SD were
carried out.

The quantile describes the distribution and location of the sample,
expressed as:

P X≤θp
� �

= p ð18Þ

where P(X≤θp) is the cumulative distribution function, X is the
population, θp is the quantile of population X at p (0bpb1).

According to their heights, at each plot, the vegetation points were
sorted by ascending order, from p=5% to p=95% (5% interval),
resulting in 19 quantiles (H05…H95, respectively).

As the stepwise multiple regressions were performed on basis of
above 20 statistics (19 quantiles, and fc, about 75% of measured forest
plots (65 out of 85, by stratified sampling)) were used to establish the
relationships between above statistics and the forest parameters
needed in the four remote sensing roughness models. The optimal
regressions were found with SPSS statistical software (see Table 3).

For high density LiDAR data covered area, fc was also calculated as
the ratio of the number of refined vegetation points over the total
number of points.

3.3.2. Synthesis of LiDAR and SPOT-5 data
The high resolution DEM from the airborne LiDAR point cloud data

was used to geocode the aerial CCD image, thereafter both of them
were applied to do the ortho-rectification and topographic correction
for the SPOT-5 image. The atmospheric correction for SPOT-5 image
was processed with the FLAASH model.

In Li–Strahler model, the average directional reflectance of a pixel
can be expressed as a linear combination of the following four
components (Li & Strahler, 1985):

S = KscGsc + KsbGsb + KdcGdc + KdbGdb ð19Þ

where S is the mean reflectance from the target surface, Gsc, Gsb, Gdc

and Gdb are the reflected signals of sunlit crown, sunlit background,
shadowed canopy and shadowed background, respectively. K's are the
areal proportions of the four components. Taking G0 as the overall
reflectance of sc, dc and db and, Eq. (19) can be simplified as:

S = KsbGsb + 1−Ksbð ÞG0 ð20Þ

and

Ksb = exp −πm sec θ′i + sec θ′v−O θi; θv;φð Þ
h in o

ð21Þ
Table 3
Stepwise multiple linear regressions for the forest structural parameters used in this
study. Havg is the arithmetical average tree height, fc is the fractional canopy cover and
H05, H35,H65, and H95 are the height quantiles of 5%, 35%, 65% and 95% respectively.

Forest
parameters

Significant
statistics

Regression models Correlation
(R2)

Havg H05 YHavg=3.525+1.025*XH05 0.70
Hl H90, H35 YHl=1.944+0.533*XH90+0.386*XH35 0.83
FBH H05 YFBH=−0.145+0.581*XH05 0.67
CW H65,fc YCW=1.643+0.136*H65+0.805*fc 0.36
SD H95 YSD=3467.4−137.41*XH95 0.40
where θi and θv are solar and satellite zenith angle respectively, φ is
the azimuth angle between the sun and satellite, O(θi, θv, φ) is an
‘overlap’ function, expressed as:

O θi; θv;φð Þ = t− sin t cos tð Þ sec θ′i + sec θ′v
� �

= π ð22Þ

cos t =
h
b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2 + tan θ′i tan θ′v sinϕ

� �2
r

sec θ′i + sec θ′v
ð23Þ

D =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tan2θ′i + tan2θ′i−2 tanθ′i tanθ

′
v cosϕ

q
ð24Þ

tan θ′ =
b
r
tan θ ð25Þ

where, h is tree height, b and r are major and minor radius of crown.
As the crucial parameter in Eq. (21), the treeness m connects the

remote sensing signal and forest structure. It is defined as:

m = ρ⁎r20 ð26Þ

where ρ is the stand density, r0 is the average crown width.
Assuming the trees are distributed randomly in the plot, fc can be

also expressed by m (Li & Strahler, 1985),

fc = 1−e−πm ð27Þ

According to Monsi and Saeki (2005), the light attenuated by the
vegetation canopy is related to vegetation structure and LAI,
expressed as,

I = I0e
−K⁎LAI ð28Þ

where I and I0 are light radiation intensities below and above the
canopy respectively, k is extinction coefficient. Similarly, for pene-
trated laser beam of LiDAR, it follows the relation with the emitted
laser beam as:

P = P0e
−K⁎LAI ð29Þ

Therefore Eq. (17) can be converted into:

1−fc = e−K⁎LAI ð30Þ

As the laser echoes from the leaves were not separated from the
overall return points in this study, the derivation was PAIe rather than
LAI. Assuming that the leaf inclination angle complies with spherical-
shape distribution, k equals to 0.5. Considering that the airborne
LiDAR data are taken from the nadir-looking observation, PAIe can be
estimated as (Bao, 2009):

PAIe≈−2 ln 1−fcð Þ = 2πm ð31Þ

After accurate inversion of fc from dense LiDAR, parameter m was
calculated with Eq. (26). This m was then used together with the
geometric data of the SPOT-5 image to calculate Ksb with Eqs. (21)–
(25). In this way a Ksb map for the area of the high density LiDAR
campaign was generated. Based on the S samples of the SPOT-5 image
selected from this area, and substituting their Ksb into the linear
spectrum decomposition Eq.(20), the dimidiate end members Gsb and
G0 were obtained by factor analysis (Bao, 2009). The values of Gsb and
G0 found in this way were applied to the whole low density LiDAR
campaign area, including to the part where dense LiDAR datawere not
collected. Now the values for Gsb and G0 were used in the other
direction, first to generate the Ksbmap for the processed SPOT-5 image



Fig. 3. Validation of Hl(a), FBH (b), CW (c), SD (d) and PAIe (e) estimates from LiDAR and SPOT-5 data. Hl for Lorey's mean height, FBH for first branch height, CW for crownwidth, SD
for stand density and PAIe for effective plant area index.
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(Eq. (20)), second to calculate m by inversed Eq. (21) and Eqs. (22)–
(25), and finally, to calculate PAIe from m with Eq. (31).

As CM88, SD00 and RA08 use LAI as input rather than PAIe, the
effects of tree trunk, branch and foliage clumping on transforming
PAIe to LAI should be taken account into. The following formula
developed by Chen and Cihlar (1996) was used in this study,

LAI = 1−αð Þ⁎PAIe⁎γe =Ωe ð32Þ

where α is the woody-to-total area ratio, γe is the needle-to-shoot
area ratio and Ωe is the element clumping index. In our study area, for
Picea crassifolia, α, γe and Ωe were found as 0.18, 1.23 and 0.88
respectively (Zou et al., 2009). These values in Eq. (32) result in a ratio
Fig. 4. Area-wide d (left) and z0m (right) maps based on CM88 (a and b), RA94 (c and d), SD00
models of Choudhury and Monteith (1988), Raupach (1994), Schaudt and Dickinson (2000
of LAI over PAIe of 1.15. One more point to be noted is that, as only a
small amount of understory mosses live on the forest floor, and the
points below 1.3 m have been separated from vegetation points, the
LAI derived from LiDAR and SPOT-5 was also used as a surrogate for Lp
in Eqs. (10)–(13).

4. Results

4.1. Forest structural parameters estimated from airborne LiDAR and
SPOT-5 data

The variables FBH, CW, SD and Ht (actually the Lorey's mean
height (Lorey, 1878), discussed in Section4.3), were derived at the
(e and f) and NA08 (g and h)model (unit: meter). CM88, RA94, SD00 and NA08 are the
) and Nakai et al. (2008), respectively.
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Table 4
Input parameters based on tree measurements.

Forest parameter Measurement LiDAR–SPOT-5 estimation

Leaf area index 3.44 3.77
Frontal area index 1.38 1.48
Stand density 1440 (trees ha−1) 1265(trees ha−1)
Arithmetical average tree height 9.50 (m) 10.50 (m)
Weighted average tree height 14.52 (m) 14.33 (m)
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plot scale by the relevant height quantiles and fc from LiDAR
vegetation points using regression expressions listed in Table 3.
Based on linear decomposition and Li–Strahler models, PAIe and LAI
were obtained by use of high density LiDAR could point and SPOT-5
reflectance (Section 3.3.2).

For the Lorey'smeanheight (Hl), FBH, CWandSD(see Fig. 3(a)–(d)),
the stratified selection of 65 forest plots were used for training the
regression models and the remaining 20 plots were used for validation.
Actually, the original LAI-2000 measurement is PAIe, therefore, instead
of LAI, PAIe estimates were validated directly using the measurements
at 32 forest plots (see Fig. 3(e)). On the whole, the highest R2 among
the retrievals is about 0.77 for Hl (RMSE~1.35 m), followed by PAIe
with R2~0.75 (RMSE~0.59), and the lowest R2 is about 0.47 for
SD (RMSE~534.52 trees), a little lower than FBH's (R2~0.50,
RMSE~1.03 m) and CW's (R2~0.59, RMSE~0.68 m).

4.2. d and z0m maps from remote sensing models

Because the tree heights were available, the fourmaps of d and z0m,
corresponding to the four models, were generated (Fig. 4) rather than
the fractional maps (d/h's and z0m/h's in some previous studies). As
input, Hl and the LiDAR and SPOT-5 retrieved data were used. Overall,
the RA94 generated the highest d values with average of 10.61 but
lowest z0m values with average of 0.50. On the contrary, NA08
produced the lowest d values with average of 6.82 but highest z0m
values with average of 1.57. Both CM88 and SD00 derived the
intermediate d and z0mmapswith d average of 8.93 and 7.97, andwith
average z0m of 1.16 and 1.03, respectively. When using the arithmetic
mean tree heights instead of Hl, the mean d and z0m values were 6.59
and 0.42, 4.52 and 1.04, 5.91 and 0.77, 4.95 and 0.88, for RA94, NA08,
CM88 and SD00, respectively. The overall tendencies and patterns in
the maps remained similar, but averaged d and z0m values were lower
for all four models than using the Hl.

4.3. Validation and comparison of d and z0m results

The results of the four methods for d and z0m estimates at the EC
site are shown in Table 5. As input, the forest inventory data, listed in
Table 4 were used. It turns out that for all methods, and both for d and
z0m, it is better to use Hl as representative tree height than Havg.
Indeed, the representative tree height of the plot would be better
expressed by weighting the tree heights of individual trees with the
basal areas than taking an arithmetic mean (Nakai et al., 2008).
Furthermore, Nakai et al. (2010) proposed that the cumulative basal
area inflection (CuBI) height is better index of aerodynamically-
determined canopy height than Hl, because Hl would be prone to a
small value if there are a large number of low trees. But, the CuBI
height seems to be not applicable to some forest plots. For example, in
our EC site, only Logistic function and Beta growth function, Eq. (4)
and Eq. (10) in Nakai et al. (2010), can fit the plot of the measured
cumulative basal area against ascending tree height, and the other
four functions are failed to produce the fitting curve. However, the
inflection points of these two fitting curves are unrealistically high
with 20.38 and 20.71 m respectively, which are higher than the
highest tree with 18.50 m.

For these reasons, we used Hl for further analysis in this study:

Hl =
∑
N

i=1
Hi⁎Ai

∑
N

i=1
Ai

ð33Þ

where Hi is single tree height, Ai is the tree basal area, N is the total of
the trees.
Table 5 shows that the RA94 produced the highest d but lowest z0m
at this site, and NA08 generated the lowest d but highest z0m. The
other twomodels rendered intermediate outcomes for both d and z0m.
The RA94 was the closest to the EC measurement of d, but
underestimated z0m, whereas the SD00 was the closest to the EC
measurement of z0m, but underestimated d.

In analogy to Table 5, Table 6 shows d and z0m for the EC site, now
using retrievals from LiDAR and SPOT-5 data as input. It should be
noted that the site geographic boundary contains some sub-pixels of
remote sensing estimates. Therefore, inside the site boundary, a zonal
statistic analysis was performed to extract the average values of input
parameters needed in the d and z0mmodels. Comparing Tables 5 and 6
shows that the values for d and z0m derived with the two input data
sets are similar. It did not make a difference whether the LiDAR and
SPOT-5 or the field measurements were used as input for the four
models. After all, the remote sensing retrievals matched the
measurements well (see Table 4). The differences among the four
models are higher than the differences caused by the input data.

For further analysis, under the condition of only one validation
point (the EC station), the histogram and accumulative probability of
the relative difference might be the integrative illustration for the
mutual area-wide maps' comparison. Although SD00 largely under-
estimated the d, it reproduced the EC measurement of z0m well.
Considering that most land surface models are more sensitive to z0m
than to d, we used d and z0m values from SD00 as the references to
calculate the relative difference and to cross-compare the models,

Srd =
jSv−SSD00j

SSD00
ð34Þ

where Srd is the relative difference of d or z0m, SSD00 is the SD00
modeled d or z0m and Sv is the derived d or z0m from the other three
models.

Then, the d and z0m values of each pixel in the maps of SD00 and
other three models were used to generate the d and z0m relative
difference maps by Eq. (34). The statistical information of these
relative difference maps is shown by their histograms and accumu-
lative probability density curves (see Fig. 5). By analysis of these
information, as a whole, for CM88, the relative difference of d (drd) is
moderate with mean (ū)=0.13, standard deviation (σ)=0.08, but
the relative difference of z0m (drz0m)(ū=0.17 and σ=1.08) is the
lowest among them. Contrarily, NA08's drd (ū=0.14, σ=0.09) is the
lowest but the drz0m (ū=0.50, σ=0.21) is similar to drz0m (ū=0.51,
σ=0.06) of RA94 which generated the highest drz0m (ū=0.34,
σ=0.09). The accumulative probability density functions of the
differences drd and drz0m, showed that 95% of the area had values of
drd and drz0m below 26% and 36% for CM88, below 48% and 57% for
RA94, and below 31% and 77% for NA08.

5. Discussion

In this study the statistics of the cloud point of LiDAR measure-
ments were used to retrieve the vertical structure of the canopy. A
more accurate alternative is to use high density airborne LiDAR cloud
points or full wave form LiDAR observations. In this way sufficient
information on individual trees could be derived. The disadvantage of



Table 5
Comparison of d and z0m from remote sensing models using the site measurements as
inputs with the EC measurements (unit: meter).

Method d with Hl d with Hl z0m with Havg z0m with Hl

CM88 6.32 9.66 0.95 1.46
RA94 7.43 11.36 0.44 0.67
SD00 5.82 8.90 0.84 1.28
NA08 5.67 8.67 1.01 1.54
EC 12.60 1.05

Table 6
Comparison of d and z0m from remote sensing models using LiDAR and SPOT-5
estimates as inputs with the EC measurements (unit: meter).

Method d with Havg d with Hl z0m with Havg z0m with Hl

CM88 7.09 9.67 1.02 1.40
RA94 8.29 11.32 0.46 0.63
SD00 6.60 9.00 0.87 1.19
NA08 6.21 8.58 1.13 1.57
EC 12.60 1.05

Fig. 5.Histograms (black column) and accumulative probability (blue line) of relative differen
basis of SD00 estimates.
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this approach is that a single flight is insufficient: more overpasses are
needed.

As the remote sensing d and z0m models concerned, the LAI based
model, CM88, was originally designed for agriculture, thus it might be
more applicable in low vegetation area than in high canopy cover. For
herbaceous plant or crop, CM88 could represent the roughness
element density by LAI, but, for forest, there is no clear relationship
between roughness element density (here refers to SD) and LAI.
However, according to CM88, z0m/h will monotonically decrease with
increasing LAI. It has been well recognized that z0m widely varies
(Garratt, 1994; Shaw & Pereira, 1982). It would decline when the
canopy aggregates and the high foliage density opposes a resistance to
the airflow, as the airflow exerts drag only near the top of the canopy.
Conversely, when the canopy becomes sparser, the dragwould reduce
again. Therefore, z0m should peak at some intermediate value of the
roughness element density (Schaudt & Dickinson, 2000). Schaudt and
Dickinson (2000) illustrated this kind of z0m variation with LAI and fc
in forest area and Zhou et al. (2006) also figured out it in both
experimental agriculture and forest sites.

For RA94, there is also the analogous problem to express the
roughness element density by FAI. The experiments of Raupach (1994)
were mainly carried out on dense vegetation or solid blocks, and might
ce of d (left) and z0m (right) from CM88 (a and b), RA94 (c and d) and NA08 (e and f) on
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not be well suited for sparse roughness element (Schaudt & Dickinson,
2000). For uniformly distributed forest with homogeneous canopy
shape, FAI might be proportional to the tree density. Due to the
complexity of the canopy shapes and overlaps of the crowns, it is hard to
determine the relationship between FAI and the density. Moreover, the
site dependent coefficients (i.e. a1–a3, b2, b3, c2, c3,d2, and d3 in RA94)
might be suitable at the specific patches, but probably be invalid at
elsewhere.

A generally applicable model would probably consider more
factors affecting the d and z0m, such as limiting infinite LAI by FAI (as in
SD00), and inter-site difference presented by SD and seasonal
variations depicted by LAI (as in NA08). As NA08's z0m expression
was established by linear fitting the observed d/h against z0m/h, the
site calibrated coefficient might be not appropriate to our site. SD00
also involves site dependent coefficients, as it was developed on basis
of RA94. Although, the SD00 produced the most close z0m to the EC
observation, but it underestimate the d to a large extent as well. It
might be explained by that, as the EC tower is surrounded by
mountains which are close to (about several hundred meters) and
higher than the tower, the winds could be elevated by them.

We stress that, although DSM and DEM from LiDAR were used to
retrieve the height quantiles, the effect of topography on d and z0m
was not taken into account in this study. For the models using FAI
(RA94 and SD00), the computation of FAI should consider the
variation of the elevation. Moreover, the shape of frontal surface
perpendicular to the airflow depends on the wind direction and then
FAI will fairly vary. To analyze the topographic and wind directional
effects, the footprint of the EC tower should be determined firstly. For
this purpose, high density LiDAR data covering the EC tower could be
used, as this can provide precise individual tree structural informa-
tion. The local landscape and topography is very complex, and
therefore, a careful analysis of high density LiDAR data would be
required. This is beyond the scope of this study. It could also be of
interests if the performances of geometrical models (i.e. RA94 and
SD00) and those of computational fluid dynamics models are cross-
compared.

Generally, a better model performance at the site scale does not
mean a wider applicability. For regional retrieval the crucial point is
whether the model inputs can be retrieved with sufficient accuracy
from remote sensing. Once the robust relevant vegetation structural
parameters can be derived by remote sensing method, such as
applying POLInSAR techniques for satellite SAR data, analyzing point
cloud or waveform data from satellite vegetation canopy LiDAR, these
kinds of remote sensing d and z0m models can be practically applied at
regional scale. In advance to that, this paper explored to take the
advantages of LiDAR point cloud in providing precise three-dimen-
sional information and SPOT-5 imagery in high spatial resolution and
multi-spectral information to derive the area-wide d and z0m maps.

Besides the bio-spatial maps including Hl, FBH, CW, SD and LAI
retrievals needed by the land surface model, maps of d and z0m can
improve eco-hydrological process simulation for the local watersheds.
In our study area, eco-hydrological processes in Dayekou and Pailugou
watersheds are much critical for the following reaches supported by
upper snow-melting water resource. Moreover, these high resolution
thematic maps are directly applicable for the d and z0m up-scaling
study. These in turn are very important for estimating the regional
heat transfer when the medium resolution satellite data (i.e. Landsat
TM, ASTER, andMODIS) are applied by remote sensing energy balance
models such as SEBS (Su, 2002).

6. Conclusion

This study was the first to apply airborne LiDAR point cloud data
and satellite SPOT-5 image to estimate the d and z0m. Based on four
models (CM88, RA94, SD00, and NA08), the generated area-wide d
and z0m maps are more applicable than the normalized d/h and z0m/h
maps which were normally retrieved from satellite remote sensing
data with absence of roughness element height information.

At the forest site, using the inventoried forest structural data, it
was tested by EC measurements that, using Hl, all models performed
much better than using the average tree height. Using preventative
roughness height, among all the model's performances, SD00 out-
performed the others in estimating z0m, but it estimated d much
lower, and RA94 performed most closely to the measurement in
retrieving d, but it rendered the lowest outcome of z0m. The lowest d
but largest z0m estimates came from the NA08. CM88 it produced
intermediate values of d and z0m.

Reasonable Hl (R2~0.77), FBH (R2~0.50), CW (R2~0.59) and SD
(R2~0.47) estimates were derived by the regressionmodels related to
the height quantiles and fc from low density LiDAR point cloud data.
Taking the effects of tree trunk, branch and leaf cluster into account,
LAI is calculated by multiplying experimental adjustment coefficient
(1.15) and inversed PAIe (R2~0.75) from synthesis of high density
LiDAR (small area) and SPOT-5 data (large area) based on linear
spectrum decomposition and Li–Strahler models. Subsequently, using
these retrievals, the four remote sensing d and z0m models were
applied to retrieve the area-wide d and z0m maps. During this process,
the tendency of each model behavior coincided to its former
performance driven by forest measurements at the site.

For the comparisons of their entire maps, histograms of relative
deviation, using the SD00 as a reference, were analyzed by their
statistics information and accumulative probability distributions. On
the whole, the variances of other three models compared with the
SD00 maps complied with the tendencies as those from site
comparisons carried out by both measurement and remote sensing
derived results.
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