WATER: Dataset of setting of the sampling plots and stripes in the Linze grassland foci experimental area

From May 2008 to July 2008, several synchronous observation quadrats were set up in the intensive observation area of Linze grassland. According to the spatial resolution of transit sensing, a 1.8km × 1.8km quadrat h and five 360m × 360m quadrats a, B, C, D and E are set up within 2km × 2km around Linze grassland station. There are 64 sampling points in sample h, numbered H01 to H64, and the distance between two adjacent points is 250m, mainly for MODIS synchronization. The sample a, B, C, D and e of 360m × 360m contains 49 sample points, the sample spacing is 60m, and the sample number is 01-49 (for example, sample a is a01-a49). The surface type of sample a is Phragmites australis, the surface type of sample B is saline alkali, and there are sparse Phragmites australis. The surface type of sample C is saline alkali, and Phragmites australis is more sparse than that of sample a. the surface type of sample D is alfalfa, and the surface type of sample e is alfalfa The type of table is barley field. A small sample of 120m × 120m is nested in each sample of a, B, C, D and e. the spacing of sample points in the small sample is 30m (see "sample distribution. PDF" in the data folder). Quadrats a, B, C, D, e and their nested small quadrats are mainly for ASAR, PALSAR, aster and airborne OMIS, widas synchronization. In addition, there are 7 microwave synchronous transects with 25 sampling points in each transect. The interval between the transects is 200m, and the interval between the sampling points on the transect is 100m. The No. l3-11 indicates the No. 11 sampling point on the No. 3 transect. PR2 is a 3 grid × 3 grid quadrat, and the distance between sampling points is 30 m. The number is pr11. There are also two PR2 transects, a total of 11 transects. The coordinates of all sample points are in Excel.

HiWATER: The multi-scale observation experiment on evapotranspiration over heterogeneous land surfaces 2012 (MUSOEXE-12)-dataset of flux observation matrix(Zhangye gobi desert station)

This dataset contains the automatic weather station (AWS) measurements from Bajitan Gobi station in the flux observation matrix from 13 May to 21 September, 2012. The site (100.30420° E, 38.91496° N) was located in a Gobi surface, which is near Zhangye city, Gansu Province. The elevation is 1562 m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity (HMP45AC; 5 m and 10 m, towards north), air pressure (PTB110; 2 m), rain gauge (TE525M; 10 m), wind speed (03001; 5 m and 10 m, towards north), wind direction (03001; 10 m, towards north), a four-component radiometer (CNR1; 6 m, towards south), two infrared temperature sensors (IRTC3; 6 m, vertically downward), soil temperature profile (AV-10T; 0, -0.02, -0.04, -0.1, -0.2, -0.4, -0.6, and -1.0 m), soil moisture profile (ECh2o-5; -0.02, -0.04, -0.1, -0.2, -0.4, -0.6, and -1.0 m), and soil heat flux (HFT3; 3 duplicates, 0.06 m). The observations included the following: air temperature and humidity (Ta_5 m and Ta_10 m, RH_5 m and RH_10 m) (℃ and %, respectively), air pressure (press, hpa), precipitation (rain, mm), wind speed (Ws_5 m and Ws_10 m, m/s), wind direction (WD_10 m, °), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing longwave radiation; Rn, net radiation; W/m^2), infrared temperature (IRT_1 and IR_2, ℃), soil heat flux (Gs_1, Gs_2 and Gs_3, W/m^2), soil temperature profile (Ts_0 cm, Ts_2 cm, Ts_4 cm, Ts_10 cm, Ts_20 cm, Ts_40 cm, Ts_60 cm, and Ts_100 cm, ℃), and soil moisture profile (Ms_2 cm, Ms_4 cm, Ms_10 cm, Ms_20 cm, Ms_40 cm, Ms_60 cm, and Ms_100 cm, %). The data processing and quality control steps were as follows. (1) The AWS data were averaged over intervals of 10 min; therefore, there were 144 records per day. The missing data were filled with -6999. (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) In this dataset, the time of 0:10 corresponds to the average data for the period between 0:00 and 0:10; the data were stored in *.xlsx format. (5) Finally, the naming convention was AWS+ site no. Moreover, suspicious data were marked in red. For more information, please refer to Liu et al. (2016) (for multi-scale observation experiment or sites information), Xu et al. (2013) (for data processing) in the Citation section.

HiWATER: The multi-scale observation experiment on evapotranspiration over heterogeneous land surfaces 2012 (MUSOEXE-12)-dataset of flux observation matrix (Daman superstation)

This dataset contains the flux observation matrix measurements obtained from the automatic weather station (AWS) at the Daman superstation between 10 May and 26 September, 2012. The site (100.37223° E, 38.85551° N) was located in a cropland (maize surface) in the Daman irrigation, which is near Zhangye, Gansu Province. The elevation is 1556.06 m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity profile (AV-14TH; 3, 5, 10, 15, 20, 30, and 40 m, towards north), wind speed and direction profile (windsonic; 3, 5, 10, 15, 20, 30, and 40 m, towards north), air pressure (CS100; 2 m), rain gauge (TE525M; 2.5 m), four-component radiometer (PSP&PIR; 12 m, towards south), two infrared temperature sensors (IRTC3; 12 m, vertically downward), photosynthetically active radiation (LI-190SB; 12 m, towards south), a TCAV averaging soil thermocouple probe (TCAV; -0.02, -0.04 m), soil temperature profile (AV-10T; 0, -0.02, -0.04, -0.1, -0.2, -0.4, -0.8, -1.2, and -1.6 m), soil moisture profile (CS616; -0.02, -0.04, -0.1, -0.2, -0.4, -0.8, -1.2, and -1.6 m), and soil heat flux (HFP01SC; 3 duplicates with one below the vegetation; and the other between plants, -0.06 m). The observations included the following: air temperature and humidity (Ta_3 m, Ta_5 m, Ta_10 m, Ta_15 m, Ta_20 m, Ta_30 m, and Ta_40 m; RH_3 m, RH_5 m, RH_10 m, RH_15 m, RH_20 m, RH_30 m, and RH_40 m) (℃ and %, respectively), wind speed (Ws_3 m, Ws_5 m, Ws_10 m, Ws_15 m, Ws_20 m, Ws_30 m, and Ws_40 m, m/s), wind direction (WD_3 m, WD_5 m, WD_10 m, WD_15 m, WD_20 m, WD_30 m, and WD_40 m, °), air pressure (press, hpa), precipitation (rain, mm), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing longwave radiation; Rn, net radiation; W/m^2), infrared temperature (IRT_1 and IR_2, ℃), photosynthetically active radiation (PAR, μmol/ (s m^-2)), average soil temperature (TCAV, ℃), soil heat flux (Gs_1, below the vegetation; Gs_2, and Gs_3, W/m^2), soil temperature (Ts_0 cm, Ts_2 cm, Ts_4 cm, Ts_10 cm, Ts_20 cm, Ts_40 cm, Ts_80 cm, Ts_120 cm, and Ts_160 cm, ℃), and soil moisture (Ms_2 cm, Ms_4 cm, Ms_10 cm, Ms_20 cm, Ms_40 cm, Ms_80 cm, Ms_120 cm, and Ms_160 cm, %). The data processing and quality control steps were as follows. (1) The AWS data were averaged over intervals of 10 min; therefore, there were 144 records per day. The missing data were filled with -6999. (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) In this dataset, the time of 0:10 corresponds to the average data for the period between 0:00 and 0:10; the data were stored in *.xlsx format. (5) Finally, the naming convention was AWS+ site no. Moreover, suspicious data were marked in red. For more information, please refer to Liu et al. (2016) (for multi-scale observation experiment or sites information), Xu et al. (2013) (for data processing) in the Citation section.