HiWATER: Dataset of ground truth measurements synchronizing with airborne PLMR mission in the Linze Inland River Basin Comprehensive Research Station on July 3, 2012
HiWATER: Dataset of ground truth measurements synchronizing with airborne PLMR mission in the Linze Inland River Basin Comprehensive Research Station on July 3, 2012

On July 3, 2012, airborne ground synchronous observation was carried out in plmr sample belt near Linze station. Plmr (polarimetric L-band multibeam radiometer) is a dual polarized (H / V) L-band microwave radiometer, with a center frequency of 1.413 GHz, a bandwidth of 24 MHz, a resolution of 1 km (relative altitude of 3 km), six beam simultaneous observations, an incidence angle of ± 7 °, ± 21.5 °, ± 38.5 °, and a sensitivity of < 1K. The local synchronous data set can provide the basic ground data set for the development and verification of passive microwave remote sensing soil moisture inversion algorithm.

Quadrat and sampling strategy:

According to the typical ground surface type represented by three points near Linze station and taking part of neutron tube observation into account, the three routes from northwest to southeast are designed, with an interval of 200 m, a design altitude of about 300 m and a plmr ground resolution of 100 m. According to the observation characteristics of the route and plmr, three observation transects are designed on both sides of the route, each of which is about 6 km long. From west to East are L1, L2 and L3 respectively. Among them, L1 and L2 are centered on the middle route, 80 m apart; L2 and L3 are 200 m apart. Four hydroprobe data acquisition systems (HDAS, ref. 2) were used to measure at the same time.

Measurement content:

About 4500 points on the sample belt were obtained, each point was observed twice, that is to say, in each sampling point, once in the film (marked as a in the data record) and once out of the film (marked as B in the data record). As the HDAS system uses pogo portable soil sensor, the soil temperature, soil moisture (volume moisture content), loss tangent, soil conductivity, real part and virtual part of soil complex dielectric are observed. Vegetation parameter observation was carried out in some representative soil water sampling points, and the measurement of plant height and biomass (vegetation water content) was completed. Note: the observation date coincides with the irrigation of large area of farmland in this area, which makes it difficult for the observer to move forward, the field block is difficult to enter, and the observation point position deviates from the preset point position.

Data:

This data set includes two parts: soil moisture observation and vegetation observation. The former saves the data format as a vector file, the spatial location is the location of each sampling point (WGS84 + UTM 47N), and the measurement information of soil moisture is recorded in the attribute file; the vegetation sampling information is recorded in the excel table.

Data Citations
Related Literatures:

1. Li, X., Liu, S.M., Xiao, Q., Ma, M.G., Jin, R., Che, T., Wang, W.Z., Hu, X.L., Xu, Z.W., Wen, J.G., Wang, L.X. (2017). A multiscale dataset for understanding complex eco-hydrological processes in a heterogeneous oasis system. Scientific Data, 4, 170083. doi:10.1038/sdata.2017.83.(View Details |Download )

Cite as:

Wang, S., Ma, M., Li, X. (2017). < b>HiWATER: Dataset of ground truth measurements synchronizing with airborne PLMR mission in the Linze Inland River Basin Comprehensive Research Station on July 3, 2012</b>2017. doi: 10.3972/hiwater.051.2013.db. (Download the reference: RIS | Bibtex )

Using this data, the data citation is required to be referenced and the related literatures are suggested to be cited.


References literature

1.Walker, J. P., Rüdiger, C., Peischl, S., Nan, Y., Bandara, R., Allahmoradi, M., Kerr, Y., Kim, E., Gurney, R., Barrett, D. and Le Marshall, J.. Australian Airborne Cal/val Experiments for SMOS (AACES) - Winter Campaign: Experiment Plan. Department of Civil Engineering, Monash University, Australia, 2010,171pp. (View Details )

2.Li Xin, Liu Shaomin, Ma Mingguo, Xiao Qing, Liu Qinhuo, Jin Rui, Che Tao. HiWATER: An Integrated Remote Sensing Experiment on Hydrological and Ecological Processes in the Heihe River Basin. Advances in Earth Science, 2012, 27(5): 481-498. (View Details |Download)

3.Li X, Cheng GD, Liu SM, Xiao Q, Ma MG, Jin R, Che T, Liu QH, Wang WZ, Qi Y, Wen JG, Li HY, Zhu GF, Guo JW, Ran YH, Wang SG, Zhu ZL, Zhou J, Hu XL, Xu ZW. Heihe Watershed Allied Telemetry Experimental Research (HiWATER): Scientific objectives and experimental design. Bulletin of the American Meteorological Society, 2013, 94(8): 1145-1160, 10.1175/BAMS-D-12-00154.1. (View Details )


Terms of Use

To respect the intellectual property rights, protect the rights of data authors, expand services of the data center, and evaluate the application potential of data, data users should clearly indicate the source of the data and the author of the data in the research results generated by using the data (including published papers, articles, data products, and unpublished research reports, data products and other results). For re-posting (second or multiple releases) data, the author must also indicate the source of the original data.

Support Program

"Heihe Watershed Allied Telemetry Experimental Research (HiWATER)

Heihe Watershed Allied Telemetry Experimental Research (HiWATER)

Related Resources
Comments

Sign In to add comments

Keywords
Geographic coverage
Spatial coverage

East:100.117

South:39.35

West:100.112

North:39.41

Details
  • Format: 文本
  • File size: 24.8 MB
  • Browse count:10672
  • Temporal coverage:2018-11-23 To 2018-11-23
  • Access: Offline
  • Updated time:2021-04-20
下载数据
Authors

Resource Provider: WANG Shuguo   MA Mingguo   LI Xin  

导出元数据
Word